

KEY TO OCEANOGRAPHIC RECORDS DOCUMENTATION NO. 5

Computer Programs in Marine Science

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Environmental Data Service

April 1976

Cover: Three-dimensional contour plot, program AUGUR, page 27.

U.S. DEPARTMENT OF COMMERCE

Elliot L. Richardson, Secretary

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
Robert M. White, Administrator
ENVIRONMENTAL DATA SERVICE
Thomas S. Austin, Director

KEY TO OCEANOGRAPHIC RECORDS DOCUMENTATION NO. 5

Computer Programs in Marine Science

Compiled by Mary A. Firestone

NATIONAL OCEANOGRAPHIC DATA CENTER : WASHINGTON, D.C.
April 1976

Mention of a commercial company or product does not constitute an endorsement by the NOAA National Oceanographic Data Center. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402.

Price \$3.50

TABLE OF CONTENTS

Introduction	V
Physical Oceanography	1
Chemistry	22
Coastal and Estuarine Processes	24
Engineering	30
Geology and Geophysics	38
Biology	50
Fisheries!	56
Pollution	72
Currents and Transfer Processes	74
Tides	80
Waves	82
Air-Sea Interaction and Heat Budget	87
Tce	91
Sound	93
Sound Velocity	97
Sound - Ray Path	99
Navigation and Charting	03
Graphic Display	16
Time and Spectral Series Analysis	25
Curve Fitting	38
Applied Mathematics	41
Data Reduction, Editing, Conversion, Inventory, Retrieval, and Special Input/Output	43
General Index	55
Language Index	81
Hardware Index	94
Institution Index	08
Endoral Information Proceeding Standard Software Summary	26

INTRODUCTION

Since the last edition of "Computer Programs in Oceanography" (compiled by Cloyd Dinger) was published in 1970, the National Oceanographic Data Center (NODC) has received many requests from scientists throughout the international oceanographic community for updated information on available programs. The present edition is in answer to this demand. Abstracts of seven hundred programs have been supplied by nearly eighty institutions in ten countries (See table, pages vii-viii).

Those familiar with the previous edition will note several changes. Four new chapters have been added -- Fisheries, Engineering, Coastal and Estuarine Processes, Pollution -- and the title has been changed to reflect a broader interest than was implied in the term "oceanography". In addition to the institution, language, and hardware indexes, a general index has been provided, allowing the reader to search by parameter, method, author, etc. And, most importantly, the number of abstracts has nearly doubled.

Most of the programs listed herein are not available from the NODC. If the NODC holds a copy of the program, it will be so noted at the end of the abstract, and the form will be described (listing, deck, etc.); copies of these materials can be supplied. Requests which involve small amounts of materials and labor will be answered free of charge; for larger requests, an itemized cost estimate will be provided, and work will begin after funds or a purchase order have been received. (Contact the Oceanographic Services Branch; telephone (202) 634-7439.)

Many programs available in published form can be obtained from the following sources, as noted in the abstracts:

National Technical Information Service (NTIS)
U. S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161 Telephone (703) 321-8543

Assistant Public Printer
U. S. Government Printing Office (GPO)
Washington, DC 20402 Telephone (202) 783-3238

When ordering from NTIS or GPO, include the order number of the document, as well as payment in the form of check or money order. Telephone orders are accepted by both agencies if the purchaser has a deposit account.

Inclusion of information on a particular program does not guarantee that the program will always be available. When the originator feels that a program has become obsolete, support for that program often is discontinued. Every effort has been made to exclude all programs which definitely are not available to anyone. About one hundred programs from the previous edition have been retained because the NODC holds a reproducible, documented copy, or the originators have stated that they still support the programs. Judging from the requests received at NODC, many of these older programs are still of interest to the scientific community.

The NODC cannot assume responsibility for the accuracy of the abstracts, except those originated by our organization, or for the proper functioning of the programs. Most of these programs will not work, without modification, on a system other than the system for which they were designed.

Reports describing program libraries are available from several other federal agencies. "Scientific Program Library Abstracts" describes programs in the following categories: Regression and curve-fit, statistical analysis, matrix operations, simultaneous equations, numerical analysis, approximation of special function, operations research, computer simulation, time series analysis, sorts, applications programs, and miscellaneous. These programs were either written for or adapted to run on a Burroughs B5500 computer containing 32.6K 48-bit words of magnetic core storage, magnetic disk mass storage, and seven-channel tape drives. Contact:

Bureau of Mines, Division of ADP U. S. Department of the Interior P. O. Box 25407, Federal Center Denver, CO 80225 "Computer Software for Spatial Data Handling" is scheduled for publication in the summer of 1976; address inquiries to the Commission on Geographical Data Sensing and Processing of the International Geographical Union, 226 O'Conner Street, Ottawa, Ontario, Canada.

Several general-purpose programs are documented in "Computing Technology Center Numerical Analysis Library," report number CTC-39, available from NTIS for \$12.00 paper copy, \$2.25 microfiche. The Computing Technology Center is operated by the Nuclear Division of Union Carbide Corporation at the Oak Ridge National Laboratory in Oak Ridge, Tennessee.

"Argonne Code Center: Compilation of Program Abstracts," report number ANL-7411, supplement 8, may also be obtained from NTIS, for \$13.60 paper copy, \$4.25 microfiche. The Argonne Code Center is located at the Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439. Programs maintained by the Center are chiefly intended for use in nuclear reactor research. Included in the Environmental and Earth Science category are programs for the following: Environmental impact studies, geology, seismology, geophysics, hydrology and ground water studies, bioenvironmental systems analyses, meteorological calculations relating to the atmosphere and its phenomena, studies of airborne particulate matter, climatology, etc.

Persons or organizations wishing to contribute program information for use in future editions and for reference in answering requests are asked to use standard form 185, Federal Information Processing Standard Software Summary; several copies of the form are printed as the last pages in this book, beginning on page 226.

The technical assistance of the following NODC personnel is acknowledged, with appreciation:

Albert M. Bargeski Dean Dale George F. Heimerdinger Nelson C. Ross John Sylvester Robert W. Taber Rosa T. Washington Judith Yavner Thomas Yowell

National Oceanic and Atmospheric Administration U. S. Department of Commerce	U. S. Department of Defense	Other Federal Agencies
Environmental Data Service: National Oceanographic Data Center National Geophysical and Solar- Terrestrial Data Center Center for Experiment Design and Data Analysis National Environmental Satellite	Department of the Army: Coastal Engineering Research Center Department of the Navy: Civil Engineering Laboratory (Port Hueneme, CA) Naval Postgraduate School	U. S. Department of the Interior: Geological Survey: National Center (Reston, VA) Woods Hole, MA Menlo Park, CA Corpus Christi, TX U. S. Department of Transportation
Service	(Monterey, CA) Fleet Numerical Weather Central	Coast Guard: Oceanographic Unit (Washington
National Ocean Survey	(Monterey, CA) Naval Undersea Research and	Ice Patrol (New York, NY)
National Weather Service: Techniques Development Laboratory	Development Center (San Diego, CA) Naval Electronics Laboratory (San Diego, CA)	Environmental Protection Agency: Gulf Breeze, FL
Environmental Research Laboratories: Pacific Marine Environmental	Naval Undersea Center (Pasadena, CA) Naval Underwater Systems Center	
Laboratory Atlantic Oceanographic and Meteorological Laboratories	(New London, CT, and Newport, RI) Naval Surface Weapons Center (Silver Spring, MD)	
National Marine Fisheries Service: Southwest Fisheries Center:	Naval Research Laboratory (Washington, DC) Fleet Weather Facility	
La Jolla Laboratory Honolulu Laboratory	(Suitland, MD) Naval Oceanographic Office	
Southeast Fisheries Center	(Washington, DC) Defense Mapping Agency Hydrographic Center (Washington, DC)	·
	Naval Oceanographic Office (Washington, DC)	·

U.S. Academic/Research Institutions	Other U.S. Contributors	Foreign and International Contributors
Columbia University: Hudson Laboratories Lamont-Doherty Geological Observatory Cornell University University of Delaware University of Hawaii University of Illinois Johns Hopkins University Massachusetts Institute of Technology University of Maine University of Maine University of Maryland University of Michigan North Carolina State University Oregon State University University of Pittsburgh University of Rhode Island Rice University Scripps Institution of Oceanography Southampton College University of Texas Texas A&M University Virginia Polytechnic Institute and State University University of Washington Williams College University of Wisconsin Woods Hole Oceanographic Institution	Los Angeles City Sanitation Department California Department of Water Resources Arthur D. Little, Inc. Rand Corporation	Fisheries Research Board of Canada Marine Environmental Data Service (Canada) Bedford Institute of Oceanography (Canada) National Institute of Oceanography (England) Institute of Oceanographic Sciences (Wales) University of Bergen (Norway) BCO Nacional de Dados Oceanograficos (Brazil BNDO, Centre National pour l'Exploitation des Oceans (France) Centro Argentino de Datos Oceanograficos University of Puerto Rico Universidad N. A. de Mexico Inter-American Tropical Tuna Commission

PHYSICAL OCEANOGRAPHY

Transport Computations from Atmospheric Pressure Language - FORTRAN I and IV Hardware - IBM 1620/IBM 1130

Computes the steady-state mass transport in the ocean from atmospheric pressure data, according to a system of analysis designed by Dr. N.P. Fofonoff. Input: Sea level pressure cards from the extended forecast division of the U.S. National Weather Service. Output: Meridional and zonal components of Ekman transport, total meridional transport, integrated transport, and integrated geostrophic transport (mean monthly values for the specified grid of alternate five degrees of latitude and longitude in the northern hemisphere. FORTRAN I program is listed in FRB manuscript series report (Ocean. and Limnol.) No. 163, by Dr. Charlotte Froese, 1963.

Pacific Biological Station Fisheries Research Board of Canada P. O. Box 100 Nanaimo, B. C. V9R 5K6 Copy on file at NODC (FORTRAN I version for IBM 1620 only - above report)

STD Computations STPO2 Language - FORTRAN IV Hardware - IBM 1130

Computes derived oceanographic quantities for Bisset-Berman STD casts. Printed output: Pressure, temperature, salinity, depth, sigma-t, specific volume anomaly, potential temperature and density, dynamic height, potential energy anomaly, oxygen content; sound velocity optional. FRB Manuscript Report (unpublished) No. 1071, by C.A. Collins, R.L.K. Tripe, and S.K. Wong, Dec. 1969.

Pacific Biological Station Fisheries Research Board of Canada P. O. Box 100 Nanaimo, B. C. V9R 5K6 Copy on file at NODC (above report)

Hydrographic Cast Computations HYDRO

Language - FORTRAN IV Hardware - IBM 1130

Computes derived oceanographic quantities for hydrographic casts. Printed output: Pressure, temperature, salinity, depth, sigma-t, specific volume anomaly, potential temperature and density, dynamic height, potential energy anomaly, oxygen content; sound velocity optional. FRB Manuscript Report (unpublished) No. 1071, by C.A. Collins, R.L.K. Tripe, and S.K. Wong, Dec. 1969.

Pacific Biological Station Fisheries Research Board of Canada P. O. Box 100 Nanaimo, B. C. V9R 5K6 Copy on file at NODC (above report)

Digitizes STD Data

Language - FORTRAN
Hardware - Hewlett-Packard 2115A

Digitizes salinity-temperature-depth data on line, using time as a criterion for selecting points. Input are frequencies from the Bisset-Berman STD system and station heading data through a teletype. Output, on paper tape, has station identification fields, time interval between data points, and the STD data. Technical report No. 152 (unpublished manuscript), by A. Huyer and C.A. Collins, Dec. 1969. (See program WET, next page)

Pacific Biological Station Fisheries Research Board of Canada P. O. Box 100 Nanaimo, B. C. V9R 5K6

Copy on file at NODC (above report)

STD Processing WET

Language - FORTRAN

Hardware - Hewlett-Packard 2115A

For shipboard processing of digitized salinity-temperature-depth data. Input is on paper tape (output from program DEEP). Output: The following parameters at standard pressures -- temperature, salinity, sigma-t, delta-d, specific gravity anomaly, specific volume anomaly, geopotential anomaly, and potential energy. Technical Report No. 152 (unpublished manuscript), by A. Huyer and C.A. Collins, Dec. 1969.

Pacific Biological Station Fisheries Research Board of Canada P. O. Box 100

Copy on file at NODC (above report)

Nanaimo, B. C. V9R 5K6 Station Data Retrieval

Language - ALGOL

HYDROSEARCH

Hardware - Burroughs 6700

Provides easy, inexpensive retrieval of hydrographic station data, with selection criteria expressed in terms of data properties. Output: Summary listing, detailed listing, cards, tape, or disk file. The program can be run either in batch mode or interactively; users can be local or remote via dial-up, ARPANET or FTS. User's Guide available.

Available from originator only

University of California, San Diego

P.O. Box 109

La Jolla, CA 92037

Telephone (714) 452-4050

STD Data Processing

Language - FORTRAN IV

Hardware - CDC 3300

Processes salimity-temperature-depth recorded in the field. BCF Special Scientific Report-Fisheries No. 588, "Processing of Digital Data Logger STD Tapes at the Scripps Institution of Oceanography and the Bureau of Commercial Fisheries, La Jolla, California," by Dr. James H. Jones, June 1969.

> Oceanic Research Division Scripps Institution of Oceanography P.O. Box 109 La Jolla, CA 92037

Copy on file at NODC (above report)

Salinity Anomaly ISALBP

Language - FORTRAN II

Hardware - CDC 3100

Calculates the salinity anomaly from a standard T/S or Theta/S curve for North Atlantic Central water developed by L.V. Worthington. The results are output on the line printer. Author - A.B. Grant (June 1968).

> Director Bedford Institute of Oceanography P. O. Box 1006 Dartmouth, N. S. B2Y 4A2

Available from originator only

Oxygen Saturation, Oxygen Anomaly

Language - FORTRAN II Hardware - CDC 3100

ISATBP

Calculates the percentage of oxygen saturation in seawater, according to tables and formulae by Montgomery (1967), as well as an oxygen anomaly on a sigma-t surface, according to a tabulated curve by Richards and Redfield (1955). The results are output on the line printer, sta-

tion by station. Author - A.B. Grant (June 1968).

2

Available from originator only

Director
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Plot Theta-S Curves

Language - FORTRAN II

Hardware - CDC 3100/PDP-8/CalComp Plotter

Plots potential temperature vs. salinity. Input on cards. Output: Printed listing and punched paper tape. Station plot uses a PDP-8 computer, paper tape reader, and CalComp Plotter. Author - R. Reiniger.

Director
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Available from originator only

Plots Station Positions

Language - FORTRAN II

Hardware - CDC 3100/PDP-8/CalComp Plotter

Plots cruise station positions on Mercator projection and writes in station number. "PLOTL" plotting routine used with PDP-8 and CalComp plotter. Author - R. Reiniger (Sept. 1968).

Director
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Available from originator only

Nutrient Concentrations PEAKS

Language - FORTRAN II Hardware - CDC 3150

Reduces a set of discretely sampled voltages from the Technicon AutoAnalyzer to a set of peak heights and thence to a set of nutrient concentrations. Input: Magnetic tape produced by a Techal Digitizer and Kennedy Incremental Recorder; card deck containing identifiers for all samples and standards. Output: Tables of peak heights and of derived nutrient concentrations. Up to 8 parameters and 400 samples can be accommodated per run.

John L. Barron
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Available from originator only

Telephone (902) 426-3676

STD Tables and Plots

Language - FORTRAN IV Hardware - HP 2100A/Disk/Ca1Comp Plotter optional

Reduces data from Guildline STD and Hewlett Packard data logger to tables of salinity-temperature-depth information and prepares it for plotting. The equation giving salinity as a function of conductivity ratio, temperature, and pressure is due to Dr. Andrew Bennett.

John L. Barron
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Available from originator only

Telephone (902) 426-3676

3

ħ.

٨

Consistency of Physical and Chemical Data C 18 A 18 X $\,$

Language - COBOL and FORTRAN subroutines Hardware - IBM 360-50/48K/Disk/2 tape units

Performs consistency check of physical and chemical data obtained during oceanographic cruises. Input: Disk pack with recorded and sorted data, parameter card indicating whether the input corresponds to physical or chemical data. Output: Listing of inconsistent data.

Capitan de Fragata Nestor

Available from originator only

Lopez Ambrosioni

Centro Argentino de Datos Oceanograficos

Avenida Montes de Oca 2124

Buenos Aires, Republica Argentina

Telephone 21-0061

Calculation of Thermometric Values C 18 A 23 X

Language - COBOL and FORTRAN subroutines

Hardware - IBM 360-50/58K/Disk/2 tape units

Calculates thermometric depth and corrected temperatures. Input: Disk with physical data and calibration table of reversing thermometers. Output: Listing of evaluated and accepted physical data.

Capitan de Fragata Nestor

Available from originator only

Lopez Ambrosioni

Centro Argentino de Datos Oceanograficos

Avenida Montes de Oca 2124

Buenos Aires, Republica Argentina Telephone 21-0061

Station Data System Final Values C 18 A 32 X FQ

Language - COBOL and FORTRAN subroutines

Hardware - IBM 360-50/64K/Disk/2 tape units

Interpolates temperature, salinity, and oxygen at standard depths; calculates sigma-t and sound velocity at observed and standard depths; also calculates specific volume anomaly and dynamic depth anomaly at standard depths. Input: Disk pack with accepted primary data records. Output: Listing of observed and computed values at observed and standard depths.

Capitan de Fragata Nestor

Available from originator only

Lopez Ambrosioni

Centro Argentino de Datos Oceanograficos

Avenida Montes de Oca 2124

Buenos Aires, Republica Argentina Telephone 21-0061

Daily Seawater Observations

Language - FORTRAN IV

Hardware - CDC CYBER 74

Input: Daily observations of temperature and salinity. Output: (1) Quarterly statistics, (2) annual statistics, (3) listing of seven-day normally weighted means for one year, and (4) plot of normally weighted means for one year. Author - H. Somers. Early version in FORTRAN II-D for the IBM 1620.

Marine Environmental Data Service

Available from originator only

580 Booth Street

Ottawa, Ont. KlA OH3

Telephone (613) 995-2011

Data Management System for Physical

and Chemical Data

OCEANS V

Language - COBOL, FORTRAN, PL/1, machine lang. Hardware - CDC 6400 under SCOPE 3.3, 125K octal words/IBM 360-85 under MVT, 200K

decimal bytes

•

The OCEANS V system is designed to make available any physical, chemical, or meteorological

4

Ţ

data collected as manual recordings or analog traces. The system is divided into a number of modules and presently processes data collected using Nansen bottles and mechanical bathythermographs. There are three stages to the system: (1) edit and quality control of newly collected data, (2) addition of these data to existing historical data, and (3) retrieval/report from these historical data.

D. Branch
Marine Environmental Data Service
580 Booth Street

Ottawa, Ont. KlA OH3

Available from originator only

Telephone (613) 995-2011

Mass Transport and Velocities GEOMASS

Language - FORTRAN II Hardware - PDP 8 E/12K

Calculates velocities at standard depths between two stations relative to deepest common depth; also calculates trapezoidally mass transport between successive depths and culumative mass transport from surface. Assumes deepest common depth is level of no motion. Author - C. Peter Duncan.

Donald K. Atwood Marine Sciences Department University of Puerto Rico Mayaguez, PR 00708 Available from originator only

Telephone (809) 892-2482

Station Data
TWIRP

Language - FORTRAN IV Hardware - PDP 10

Interpolates oceanographic data; calculates sigma-t, dynamic depth anomaly, potential temperature, and delta-t. Input: Observed thermometric depths, temperature, salinity, and chemistry. Output: Temperature, salinity, sigma-t, potential temperature, delta-t at observed depths and all of these plus dynamic height anomaly interpolated to standard depths. Author - C. Peter Duncan.

Donald K. Atwood Marine Sciences Department University of Puerto Rico Mayaguez, PR 00708 Available from originator only

Telephone (809) 892-2482

Thermometer Correction, Thermometric Depth GIESE 04

Language - FORTRAN IV Hardware - PDP 10

Corrects thermometers and calculates thermometric depth, as per formulae by Keyte. Input: Thermometer number, uncorrected reading, auxiliary thermometer reading, data, cruise number, station number, wire out. Output: Corrected temperatures, corrected unprotected thermometer readings, and thermometric depth. Author - Mary West.

Donald K. Atwood Marine Sciences Department University of Puerto Rico Mayaguez, PR 00708 Available from originator only

Telephone (809) 892-2482

Oceanography Station Computer Program

Language - FORTRAN IV

Hardware - Burroughs 6700/2125 words

Processes observed station data to obtain interpolated values of temperature, salinity, oxygen, specific volume anomaly, dynamic depth, sigma-t, and sound velocity. The three-point Lagrange interpolation equation and the Wilson sound velocity formula are used in the computations. Running time is two seconds per station.

Miguel Angel Alatorre Instituto de Geofisica Universidad N.A. de Mexico Ciudad Universitaria Mexico 20, D.F. Copy on file at NODC

Telephone 548-65-00, ext. 537

Flexible System for Biological, Physical, and Chemical Data SEDHYP (System d'Exploitation des Donnees en Hydrologie Profonde) Language - FORTRAN IV
Hardware - XDS Sigma 7/40K 32 bit words with
overlay

A very flexible system of about 5,000 cards which computes, interpolates, lists, and plots physical, chemical, and biological parameters. Input includes: List of the parameters to be listed, computed, interpolated, plotted, and copied on files; method of computation and interpolation; name of the parameter to be used as "interpolater"; list of the interpolation levels; format of the processed data. Output: Listings of the observed, computer, or interpolated parameters; plots of one parameter versus another parameter with all the curves on the same graph, or by groups of N curves on the same graph; copy of the values of one parameter on a working file for further use by other programs. The options, input on cards, are analysed and controlled; each station is stored in "common" area; then parameters are computed and interpolated. Files in a new format (FICPAR) are created; each file contains all the values of all the stations for one parameter. The plot is realized from two files of the FICPAR type. Documentation: Presentation de SEDHYP, Dec. 1973; also, Catalogues des methodes de calcul, d'interpolation et de reduction, Dec. 1973.

Mr. Stanislas, BNDO
Centre National pour 1'Exploitation
des Oceans
Boite Postale 337
29273 Brest Cedex, France

Available from originator only

Telephone 80.46.50, telex. 94-627

Subroutines for Physical, Chemical and Biological Parameters CO4 SAL, C44 TETA, C 46 SIGM Z, etc. Language - FORTRAN IV Hardware - XDS Sigma 7

Subroutines compute the following parameters: Depth, pressure, salinity, potential temperature, sigma-o, oxygen saturation percent, sigma-t, delta-st, potential sigma, alpha, delta-alpha, sigma-stp, nitrate, saturated oxygen, apparent oxygen utilization, sound velocity, dynamic depth, potential energy anomaly, salinity or temperature flux, Vaisala frequency. Input: Value of all parameters to be used in the computations and the catalog identification number of the chosen method. Documentation: "Catalogue des methodes de calcul des parameters physiques, chimiques et biologiques," Dec. 1973.

Mr. Stanislas, BNDO Centre National pour l'Exploitation des Oceans Boite Postale 337 29273 Brest Cedex, France Available from originator only

Telephone 80.46.50, telex 94-627

Interpolation Subroutines INTERP1, INTERP2, etc.

Language - FORTRAN IV Hardware - XDS Sigma 7

Subroutines interpolate the values of a parameter at different levels; for each subroutine, the method is different: spline function, polynomial interpolation, linear interpolation, Lagrange polynomial interpolation. Input: The values of the parameter to be interpolated, the corresponding values of the parameter to be used as "interpolater" (e.g., depth), list of the levels of the "interpolater" for which interpolation is asked, the number of points to be used. Documentation: "Catalogue des methodes d'interpolation," Dec. 1973.

Mr. Stanislas, BNDO Centre National pour l'Exploitation des Oceans Boite Postale 337 29273 Brest Cedex, France Available from originator only

Telephone 80.46.50, telex 94-627

Processes STD and CTD Data SEDSTD (Systeme d'Exploitation des DONNEES STD, CTD) Language - FORTRAN IV Hardware - XDS Sigma 7/25K words

The system includes programs to copy the raw data from paper tape onto magnetic tape, to produce validated data from the raw data using calibration information, and to process the validated data. It is possible to reprocess the stations from raw data or validated data on magnetic tape. Option information to be supplied includes: identification number of the stations to be processed, whether the data are raw or validated, list of the depth levels to be listed, and scale of the parameters to be plotted. Output: Listings of depth or pressure, temperature, salinity (observed or computed from conductivity), oxygen, oxygen saturation percent, sigma-t, potential temperature, potential sigma, delta-alpha, and delta-d for each station; plots of temperature, salinity, oxygen and sigma-t vs. depth, and temperature vs. salinity for each station; magnetic tape files of raw and validated data. Documentation: Presentation de SEDSTD, Dec. 1973.

Mr. Stanislas, BNDO
Centre National pour l'Exploitation
des Oceans
Boite Postal 337
29273 Brest Cedex, France

Available from originator only

Telephone 80.46.50, telex 94-627

Reads, Calculates, Interpolates Station Data CAPRICORN

Language - FORTRAN IV Hardware - IBM 360-65/320K bytes

Reads oceanographic station data from cards or NODC formatted 120-character-per-record tape. If desired, it can edit the NODC tape and/or calculate and interpolate oceanographic parameters for each station or calculate and interpolate variables at specified sigma theta surfaces or potential temperatures. (See subroutines F3, SECPG, EDIT, and PLTEDT.)

Ruth McMath
Department of Oceanography
Texas A&M University
College Station, TX 77843

Available from originator only

Telephone (713) 845-7432

Station Data Calculations F3

Language - FORTRAN IV Hardware - IBM 360-65

This subroutine takes as input, through its common blocks, the observed values for depth, temperature, salinity, and, if available, oxygen, phosphate, silicate, nitrate, and nitrite. It then interpolates salinity and temperature to standard depths, using either a linear means or by weighting two Lagrangian three-point polynomials (depending on whether there are three or four properly distributed data points). The subroutine calculates the following for both the observed and standard depths: potential temperature, thermosteric anomaly, specific volume anomaly, sigma-t, the sigma values for depths of 0, 1000, 2000, 3000, 4000, and 5000 meters. Computations of sound velocity, dynamic height, and transport functions are made for standard depths only. The computation for stability is made at the observed depths only. The values of oxygen, phosphate, silicate, nitrate, and nitrite are simply printed out, if they are read. Subroutine F3 is a composite of programs written by various authors: The original "F" program was written by Kilmer and Durbury for the IBM 650. This program was expanded by Nowlin and McLellan for the IBM 7094 and again by Eleuterius for the IBM 360. The Scripps SNARKI program provided the basis for much of the present version. (See program CAPRICORN.)

Ruth McMath Department of Oceanography Texas A&M University College Station, TX 77843 Available from originator only

Telephone (713) 845-7432

Plots Station Data PLTEDT Language - FORTRAN IV
Hardware - IBM 360-65/Houston Omnigraphic
Plotter

This subroutine generates a plot tape to make any of the following 13 plots: Temperature vs. depth, salinity vs. depth, sigma-t vs. depth, temperature vs. salinity, oxygen vs. sigma-t, oxygen vs. temperature, temperature vs. silicate, potential temperature vs. salinity, phosphate vs. depth, sound velocity vs. depth, stability vs. depth, silicate vs. depth, oxygen vs. depth. The size of the plots is 11 x 17 inches. (See program CAPRICORN)

Ruth McMath Department of Oceanography Texas A&M University College Station, TX 77843 Available from originator only

Telephone (713) 845-7432

Calculates Station Data SECPG

Language - FORTRAN IV Hardware - IBM 360-65

This subroutine computes the depths that correspond to input density surfaces. It then interpolates temperature, salinity, oxygen, phosphate, nitrate, and nitrite to these computed depths. Using these interpolated values for temperature and salinity, the following are calculated at each computed depth: Potential temperature, thermosteric anomaly, specific volume anomaly, sigma theta for depths of 0, 1000, 2000, 3000, 4000, and 5000 meters, transport, dynamic height and acceleration potential. Uses Lagrangian interpolation or linear interpolation, depending on point distribution. (See program CAPRICORN)

Ruth McMath
Department of Oceanography
Texas A&M University
College Station, TX 77843

Available from originator only

Telephone (713) 845-7432

Station Data

Language - HP ASA Basic FORTRAN
Hardware - HP 2100/13K words/Keyboard/CalComp
Plotter, paper tape punch, and
magnetic tape unit optional

Computes station data. Input: Header information, depth, temperature, salinity, oxygen and silicate from a user-specified device. Output: Station data including depth, temperature, salinity, oxygen, silicate, pressure, potential temperature, dynamic height, etc. Plot or tape output optional.

Chris Polloni Woods Hole Oceanographic Institution Woods Hole, MA 02543 Available from originator only

Telephone (716) 548-1400

Brunt-Vaisala Frequency

Language - FORTRAN IV

Hardware - XDS Sigma 7/204 words

Subprogram computes the Brunt-Vaisala frequency (radians/sec) from station data. Input: Gravitational acceleration, pressure, temperature, salinity. Requires double precision of program ATG.

Information Processing Center Woods Hole Oceanographic Institution Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-1400

Dynamic Height

Language - FORTRAN IV

DYNHT

Hardware - XDS Sigma 7/85 words

Subprogram calculates an array of dynamic heights for specified arrays of pressure and specific volume anomalies.

Jacqueline Webster

Available from originator only

Woods Hole Oceanographic Institution Woods Hole, MA 02543

Telephone (617) 548-1400

Potential Energy Anomaly

Language - FORTRAN IV

Hardware - XDS Sigma 7/103 words

Subprogram computes the potential energy anomaly from pressure and specific volume anomaly.

Jacqueline Webster

Woods Hole Oceanographic Institution Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-1400

Various Parameters from Station Data

OCCOMP

Language - FORTRAN IV

Hardware - XDS Sigma 7/23K words

Computes various oceanographic parameters from NODC format station data; interpolates parameters to standard depths; computes geostrophic velocity and volume transport for successive stations.

Mary Hunt

Available from originator only

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Specific Volume Anomaly

SVANOM

Language - FORTRAN IV-H Hardware - XDS Sigma 7

Subroutine computes the specific volume anomaly, given the pressure and the specific volume, from an empirical formula devised by Fofonoff and Tabata.

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Copy on file at NODC (listing, documentation)

Telephone (617) 548-1400

Pressure Subroutine

PRESS

Language - FORTRAN IV-H Hardware - XDS Sigma 7

Subroutine computes a series of pressures from a given series of depths, temperatures, salinities, and their latitude. The equation for pressure is integrated by successive approximations.

Mary Hunt

Copy on file at NODC (listing, documentation)

à

Woods Hole Oceanographic Institution Woods Hole, MA 02543

Telephone (617) 548-1400

Reads Station Data DATA

Language - FORTRAN IV-H Hardware - XDS Sigma 7

Subroutine reads oceanographic station data cards and returns the information therein to the user, one station for each call.

Mary Hunt

Available from originator only

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Geostrophic Velocity Difference Subroutine

Language - FORTRAN IV-H

Hardware - XDS Sigma 7

Computes geostrophic velocity difference between two oceanographic stations, according to a formula described by N.P. Fofonoff and Charlotte Froese.

Mary Hunt

Copy on file at NODC (listing, documentation)

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Volume Transport

VTR

Language - FORTRAN IV-H

Hardware - XDS Sigma 7

Computes volume transport between two stations.

Mary Hunt

Available from originator only

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Sigma-t

SIGMAT and DSIGMT

Language - FORTRAN IV-H

Hardware - XDS Sigma 7

Subroutine computes sigma-t from temperature and salinity by Knudsen's formula, rewritten by Fofonoff and Tabata. DSIGMT is the double-precision form of SIGMAT.

Mary Hunt

Copy on file at NODC (listing, documentation)

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Adiabatic Temperature Gradient

ATC

Language - FORTRAN IV-H Hardware - XDS Sigma 7

Subroutine calculates adiabatic temperature gradient for specified values of pressure, temperature, and salinity, using an empirical formula developed by N.P. Fofonoff.

Copy on file at NODC (listing, documentation)

Ą

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Potential Temperature

POTEMP

Language - FORTRAN IV

Hardware - XDS Sigma 7/100 words

Subprogram computes the potential temperatures at a given temperature, salinity, and pressure, using a formula derived from a polynomial fit to laboratory measurements of thermal expansion.

10

Mary Hunt Available from originator only Woods Hole Oceanographic Institution Woods Hole, MA 02543

Telephone (617) 548-1400

Specific Volume

Language - FORTRAN IV

SPVOL

Hardware - XDS Sigma 7/129 words

Subprogram computes the specific volume (ml/g) of seawater at a given temperature, pressure, sigma-o, and sigma-t, using formula by V.W. Ekman (rewritten by Fofonoff and Tabata). Input: values of sigma-t as calculated by subprogram SIGMAT.

Mary Hunt

Available from originator only

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

0xygen OPLOT

Language - FORTRAN IV Hardware - CDC 3300

Computes oxygen in m1/1 and percent saturation.

U.S. Coast Guard Oceanographic Unit Available from originator only

Bldg. 159-E, Navy Yard Annex Washington, DC 20590

Telephone (202) 426-4642

Chlorophyl CHLO

Language - FORTRAN IV

Hardware - CDC 3300

Computes chlorophyl in mg/l.

U.S. Coast Guard Oceanographic Unit Available from originator only

Bldg. 159-E, Navy Yard Annex Washington, DC 20590

Telephone (202) 426-4642

Salinity SALTY

Language - FORTRAN IV Hardware - CDC 3300

Computes salinity in ppt with temperature correction and shear correction between each standard water sample.

U.S. Coast Guard Oceanographic Unit Available from originator only

Bldg. 159-E, Navy Yard Annex

Washington, DC 20590

Telephone (202) 426-4642

Temperature-Salinity Class Volume

TSVOL

Language - FORTRAN IV Hardware - CDC 3300

Calculates volume of water by T-S class, area within which station is located (in sq. km) and total volume for each T-S class.

U.S. Coast Guard Oceanographic Unit Available from originator only

Bldg. 159-E, Navy Yard Annex

Washington, DC 20590

Telephone (202) 426-4642

Thermometer Correction THERZ

Language - FORTRAN IV Hardware - CDC 3300

Corrects deep-sea reversing thermometers using calibration factors; computes thermometric depth for unprotected thermometers, lists bad thermometers and their malfunctions, computes observed L-Z, plots L-Z curve (on line), computes used L-Z and picks from the L-Z curve the depths for the other bottles.

U.S. Coast Guard Oceanographic Unit Available from originator only Bldg. 159-E, Navy Yard Annex

Washington, DC 20590

Telephone (202) 426-4642

Transport XPORT

Language - FORTRAN IV

Hardware - CDC 3300/CalComp Plotter

Calculates sigma-t, dynamic heights, solenoidal values of average temperature and salinity volume flow, current velocity at top of each solenoid, distance (n.m.) between stations, specific heat, heat and salt transport, net volume flow for each pair of stations, net volume flow in form of cold core and warm water for each station and plots solenoid graph on off-line plotter.

U.S. Coast Guard Oceanographic Unit Available from originator only

Bldg. 159-E, Navy Yard Annex

Washington, DC 20590

Telephone (202) 426-4642

Plots Temperatures, Lists Mixed Layer Depths

Language - FORTRAN

WEEKPLOT

Hardware - Burroughs 6700/Less than 20K words/ CalComp Plotter

Plots sea temperature for one-degree quadrangles for the eastern tropical Pacific Ocean; also, computes and lists mixed layer depths. Mixed layer depths are computed by an empirical formula and modified by reports received from tuna fishing vessels. Input: Disk files of synoptic marine radio weather reports, prepared separately from punched cards.

Available from originator only

Southwest Fisheries Center

National Marine Fisheries Service, NOAA

P.O. Box 271

La Jolla, CA 92037

Telephone (714) 453-2820, ext. 325

Constants for Harmonic Synthesis of Mean Sea

Language - ALGOL

Temperatures, HARMONIC

Hardware - Burroughs 6700/Less than 30K words/ Disk input and output

Computes five constants to be used in harmonic synthesis of mean sea temperatures, by one-degree quadrangles. Monthly variations of mean sea temperature are treated by a Fourier series analysis. Disk file of constants, by one-degree quadrangles for the Pacific Ocean.

Available from originator only

Southwest Fisheries Center

National Marine Fisheries Service, NOAA

1

P.O. Box 271

La Jolla, CA 92037

Telephone (714) 453-2820, ext. 325

Vertical Section Plots

Language - FORTRAN 63

ESTPAC

Hardware - CDC 3600/32K words/3 tape units/ Calcomp Plotter

Constructs vertical temperatures and salinity sections from STD magnetic tape on 30-inch-wide

plotting paper. The product of the two dimensions (station distance x depth) of a data array times four must not exceed 32,000. NOAA Technical Report NMFS CIRC-365.

> Kenneth A. Bliss Available from originator only Southwest Fisheries Center National Marine Fisheries Service, NOAA P.O. Box 271 La Jolla, CA 92037 Telephone (714) 453-2820

Converts STD Data

Language - FORTRAN

RDEDTP

Hardware - CDC 3600/15K words/2 tape units

Reads raw STD data from tape, converts to engineering units, removes extraneous values, smooths and writes a new tape. U.S. Fish and Wildlife Service Spec. Sci. Rept. Fish. 588, by James H. Jones, 1969. This program is presently in the state of revision.

> Kenneth Bliss Available from originator only Southwest Fisheries Center National Marine Fisheries Service, NOAA P.O. Box 271 La Jolla, CA 92037 Telephone (714) 453-2820

Corrects STD Data

Language - FORTRAN

TPMOD

Hardware - CDC 3600/10K words/2 tape units

Reads STD data from output of program RDEDTP, calibrates data, adds station location and data, and writes a final corrected tape. U.S. Fish and Wildlife Service Spec. Rept. Fish. 588, by James J. Jones, 1969.

> Kenneth Bliss Available from originator only Southwest Fisheries Center National Marine Fisheries Service, NOAA P.O. Box 271 Telephone (714) 453-2820 La Jolla, CA 92037

Environmental Dynamics Subroutines OCEANLIB

Language - BASIC Hardware - IBM 360/Dartmouth DTSS

A series of subroutines: ALPHA calculates Alpha 35, 0, P for any depth by interpolating standard values from a random access file; GRAV computes the resultant gravity at any latitude, using the international gravity formula. SIGMAT calculates sigma-o and sigma-t using empirical formulas of Knudsen for sigma-o and LaFond for sigma-t. DENSITY calculates the in situ density of seawater, using empirical formulas developed by LaFond and others. SOUND computes sound velocity using the empirical formula developed by Leroy in 1968. POSIT computes the direction and distance between points on the earth's surface, using spherical trigonometry, allowing the earth's radius to vary.

> LCDR W.C. Barney Environmental Sciences Department U.S. Naval Academy Annapolis, MD 21402

Available from originator only

Telephone (301) 267-3561

Geostrophic Current CURRENT

Language - BASIC

Hardware - IBM 360/Dartmouth DTSS/14.5K

Calculates geostrophic current at standard depths between adjacent stations using method of

dynamic height or geopotential anomalies. Requires OCEANLIB subroutines.

LCDR W.C. Barney Environmental Sciences Department

U.S. Naval Academy Annapolis, MD 21402 Available from originator only

Telephone (301) 267-3561

Monthly Sonic Layer Depthh

Language - FORTRAN Hardware - IBM 7074

Calculates sonic layer depth from BT traces and converts position to plot on Mercator base without overprints. OS No. 53480. Author - D.B. Nix.

Data Systems Office

U.S. Naval Oceanographic Office Washington, DC 20373

Available from originator only

Telephone (301) 763-1449

Vertical Temperature Gradients

Language - FORTRAN Hardware - IBM 7074

Computes, from geographic station data, the vertical temperature gradient largest in absolute magnitude between successive standard depths, for each station. These gradients are tabulated in frequency distribution format, and averages are calculated for each one-degree square. OS No. 20126 Part 2. Author - C.S. Caldwell.

> Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373

Available from originator only

Telephone (301) 763-1449

Water Clarity

Language - FORTRAN V

Hardware - UNIVAC 1108/3K words/Drum

Combines data taken with Scripps illuminameter, transmissometer, Secchi disk and Forel-Ule Scale. Logarithmetic combination of parameters are summed over observation intervals to yield meter by meter results. Input: Diffuse attenuation coefficients, transparency readings, depths of observations via cards. Output: Visibility loss at specific levels of the water column and contrast loss expressed in decibel values.

> Philip Vinson U.S. Naval Oceanographic Office Washington, DC 20373

Available from originator only

Telephone (202) 433-3878

Oceanographic Data Computation TPCONV

Language - FORTRAN EXTENDED

Hardware - CDC 6500/15K 60 bit words/Two tape

units

Assembles temperature, salinity, and sound velocity at forty standard oceanographic depths from any preselected ocean area onto magnetic tape. Also included for each oceanographic station is the layer depth, layer sound velocity, in-layer gradient, below-layer gradient, axis depth and axis depth sound velocity. Output used by program SUMMARY. NUC Tech. Note 1223.

> John J. Russell Naval Undersea Center Code 14 San Diego, CA 92132

Available from originator only

Telephone (714) 225-6243

Variance and Standard Deviation SUMMARY

Language - FORTRAN EXTENDED
Hardware - CDC 6500/63K 60 bit words/Disk/
Two tape units

Orders selected oceanographic data at each of forty standard levels and selects maximum, 10, 20, 30, 40, 50, 60, 70, 80, 90, 25 and 75th percentiles, and minimum. Also computes variance and standard deviation at each of the forty standard depths. Input: Data generated by the program TPCONV. Output: Deck of eighty-one cards - two cards at each of the forty standard depths. First card contains maximum, percentiles (above), minimum, number of observations, and identification at one depth. The second card contains variance, number of observations, mean, depth number, and identification. NUC Tech. Note 1224.

John J. Russell Naval Undersea Center Code 14 San Diego, CA 92132

Available from originator only

Telephone (714) 225-6243

Sigma-T INVREJ

Language - ANSI FORTRAN Hardware - CDC 3300

Removes inversions in sigma-t profiles prior to calculation of buoyance-frequency profile. The following options are available: binomial smoothing, minima rejection, maxima rejection, and local smoothing.

K. Crocker Naval Underwater Systems Center Newport, RI 02840 Available from originator only

Telephone (401) 841-3307

STD Processing OCEANDATA

Language - ANSI FORTRAN
Hardware - CDC 3300/UCC plotter

Converts raw Plessey CTD-STD data (frequency or period average) to parametric form, corrects salinity for time constant mismatch, rejects invalid data, averages data by designated intervals (normally 1 decibar). Provides listing, plots, disk and tape files of corrected raw data and reduced data. Several special purpose editions available.

K. Crocker Naval Underwater Systems Center Newport, RI 02840 Available from originator only

Telephone (401) 841-3307

Internal Waves
WITCOMB

Language - USASI FORTRAN Hardware - CDC 3300 / 26K words

Calculates internal wave eigenvalues (dispersion curves) and eigenfunctions as solutions to the linear internal wave equation. Input: Density as a function of depth in the ocean from the surface to the bottom. Data points do not have to be equally spaced in depth. Output: Density profile (smoothed), buoyance-frequency profile, dispersions curves (all listings); plotter tape for preceding plus eigenfunctions. Performs numerical integration of internal wave equation using assumed values of frequency and wavenumber until boundary conditions are satisfied by trial and error.

Alan T. Massey Naval Underwater Systems Center Newport, RI 02840 Available from originator only

Telephone (401) 841-4772

Interpolation for Oceanographic Data

Language - FORTRAN

Hardware - CDC 3200/IBM 1620

Interpolates the values of depth, temperature, and salinity at isentropic levels (constant values of the density functions). Uses a four-point Lagrangian polynomial. Exception: Modifications are made where common oceanographic conditions distort the polynomial. Technical Report TM-312 by J. Farrell and R. Lavoie, Feb. 1964.

Naval Underwater Systems Center Newport, RI 02840 Copy on file at NODC (above report)

STD-S/V Data S2049 Language - FORTRAN V

Hardware - UNIVAC 1108/CalComp Plotter

Performs general purpose processing of STD-S/V data; includes conversion to oceanographic units, editing, ordering relative to increasing depth, calculation of dependent variables, and plotting of results. Input: Pressure or depth, temperature, salinity or conductivity, and sound speed in units of frequency, period or geophysical units. Density computed by integration of P, T, S throughout the water column; sound speed by Wilson's equation; potential temperature by Fofonoff's equation. Output: Magnetic tape, listing, plots of profiles, T vs. S, cross-sections, geographic contours; measured parameters plus density, sound speed, potential quantities, Brunt-Vaisala frequency.

Michael Fecher Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771, ext. 2834

Thermometric Depth Calculation CAST

Language - HP FORTRAN IV under RTE
Hardware - HP 2100S/12K words core/10K
for RTE/CalComp Plotter

Uses thermometer readings from Nansen bottles to calculate thermometric depths of the bottles, following method described in instructions for filling out Naval Oceanographic Office "A Sheet." Thermometric depths are printed with input data; L-Z graph is plotted.

J. Dean Clamons Available from originator only Shipboard Computing Group, Code 8003
Naval Research Laboratory
Washington, DC 20375 Telephone (202) 767-2024

Thermometer Data File Handler THERMO

Language - HP FORTRAN IV under RTE Hardware - HP 2100S/12K words core/10K for RTE

Maintains and builds a disk file containing correction factors for thermometers used on Nansen casts. Program is interactive and can add, delete, change, or list data for each thermometer.

J. Dean Clamons Available from originator only Shipboard Computing Group, Code 8003
Naval Research Laboratory
Washington, DC 20375 Telephone (202) 767-2387

Internal Gravity Waves DISPER

Language - FORTRAN Hardware - CDC 3800

Calculates frequency - wavenumber dispersion relations for internal gravity wave models. Input: Brunt-Vaisala frequency distribution, wavenumber range, mode number range. Output: Frequency as a function of wavenumber for specified modes, in tabular or line printer plot form.
NRL Report 7294, "Numerical Calculation of Dispersion Relations for Internal Gravity Waves," by
T.H. Bell, Sept. 1971.

T. H. Bell Ocean Sciences Division Naval Research Laboratory Washington, DC 20375

Available from originator only

Telephone (202) 767-3122

Sea Surface Temperature Analysis Model MEDSST Language - FORTRAN/COMPASS

Hardware - CDC 3100/CDC 3200/32K 24 bit words

Performs a synoptic sea-surface temperature analysis, using a Laplacian relaxation technique to generate the final field. EPRF Program Note 5, "Mediterranean Sea-Surface Temperature Analysis Program MEDSST," by A.E. Anderson, Jr., S.E. Larson, and L. I'Anson.

Sigurd Larson
Environmental Prediction
Research Facility
Naval Postgraduate School
Monterey, CA 93940

Available from originator only

Telephone (408) 646-2868

Objective Thermocline Analysis

Language - FORTRAN IV-H Hardware - IBM 360/CDC 6500

Reads digitized bathythermograph traces and then analyzes them objectively by Gaussian and non-Gaussian methods for the top, center, and base of the main thermocline. Additionally, such features as multiple thermoclines, inversions, and thermal transients are identified and their key points are included in the information data printout. "Objective Digital Analysis of Bathythermograph Traces," thesis by Eric F. Grosfils, Dec. 1968.

Naval Postgraduate School Monterey, CA 93940 Available from NTIS, Order No. AD 689 121/LK, \$5.75 paper, \$2.25 microfiche.

Wet Bulb Temperature WETBLB

Language - FORTRAN IV Hardware - CDC 6600

Computes the wet bulb temperature from the inputs of dry bulb temperature, pressure, and relative humidity. This is sometimes useful for generating homogeneous archive outputs (filling in missing wet bulb temperatures from the other variables).

Jerry Sullivan Center for Experiment Design and Data Analysis, NOAA/EDS Washington, DC 20235 Available from originator only

Telephone (202) 634-7288

Internal Wave Oscillations ZMODE

Language - FORTRAN

Hardware - CDC 6600 & 7600 (original program), UNIVAC 1108 (modified version)/31K

words

Computes eigenfunctions and dispersion relations for internal wave oscillations in a density-stratified water column, using Newton-Raphson approximation technique to obtain solutions for eigenfrequencies and associated mode functions. Input: STD data on cards. Output: Tabular output of density, Brunt-Vaisala frequency, dispersion relations, eigenfunctions. User's Manual (RDA-TR-2701-001) by R&D Associates, Santa Monica, California, for implementation on CDC 6600 and CDC 7600; modified User's Manual by A. Chermak for AOML's UNIVAC 1108.

Available from originators only

Andrew Chermak
Ocean Remote Sensing Laboratory
Atlantic Oceanographic and
Meteorological Laboratories, NOAA
15 Rickenbacker Causeway

Miami, FL 33149 Telephone (305) 361-3361

Isentropic Interpolation

Language - FORTRAN

Hardware - IBM 360-65/61K bytes

Provides values of several variables at selected density (sigma-t) levels; interpolation by cubic spline, with modifications for oscillation. Input: NODC SD2 (station data) file. Output: Interpolated values of depth, temperature, salinity, pressure, specific volume anomaly, dynamic height and acceleration potential, on magnetic tape. Author - Douglas R. Hamilton.

Oceanographic Services Branch

Copy on file at NODC

National Oceanographic Data Center

NOAA/EDS

Washington, DC 20235

Telephone (202) 634-7439

Potential Temperature and/or Density

Language - Assembler

POTDEN

Hardware - IBM 360-65/50K bytes

Reads the NODC SD2 (station data) file and replaces temperature and/or sigma-t with potential temperature and/or density. Requires subroutine PODENS. Author - Walter Morawski.

Oceanographic Services Branch

National Oceanographic Data Center

NOAA/EDS

Washington, DC 20235

Copy on file at NODC

Telephone (202) 634-7439

SIGMAT

Language - FORTRAN

Hardware - IBM 360-65/740 bytes (object form)

Computes sigma-t, giving a rounded floating point answer accurate to four significant decimal digits (xx.xx); also returns the computed variable FS (a function of sigma-t), a short floating point number. Author - Robert Van Wie.

Oceanographic Services Branch

National Oceanographic Data Center

NOAA/EDS

Washington, DC 20235

Copy on file at NODC

Telephone (202) 634-7439

Dynamic Depth Anomaly

Language - FORTRAN IV-G

DYANOM

Hardware - IBM 360-65

Subroutine computes dynamic depth anomaly. Author - Robert Van Wie.

Oceanographic Services Branch

National Oceanographic Data Center

Copy on file at NODC

NOAA/EDS

Washington, DC 20235

Telephone (202) 634-7439

Computes Salinity from Conductivity, T, P

SALINE

Language - FORTRAN Hardware - IBM 360-65 Computes salinity from conductivity in milli mhos/cm, pressure in decibars, and temperature in degrees C. Valid for temperature range 0-30 degrees C, salinity range 20-40 ppt, pressure range 0-3000 decibars; measurements outside these ranges may cause a significant error in the resulting salinity computation. Author - Philip Hadsell.

Oceanographic Services Branch National Oceanographic Data Center Copy on file at NODC

NOAA/EDS

Washington, DC 20235

Telephone (202) 634-7439

Volume Transport Function

Language - FORTRAN Hardware - IBM 360-65

Computes the volume transport function at each depth of a hydrographic station. Author - Ralph Johnson.

Oceanographic Services Branch National Oceanographic Data Center Copy on file at NODC

NOAA/EDS

Washington, DC 20235

Telephone (202) 634-7439

Potential Temperature, Potential Density

PODENS

Language - FORTRAN IV-G Hardware - IBM 360-65

Computes potential temperature and potential density from depth, temperature, and salinity. Author - Dave Pendleton.

Oceanographic Services Branch

National Oceanographic Data Center

NOAA/EDS

Washington, DC 20235

Copy on file at NODC

Telephone (202) 634-7439

Volume Transport

VOLTRN

Language - FORTRAN IV Hardware - IBM 360-65

Computes volume transport between any two stations, according to the formulas in D. Pendleton's "Specifications for a subroutine which computes the transport function," NODC, August 29, 1972. Author - Ralph Johnson.

Oceanographic Services Branch

National Oceanographic Data Center

NOAA/EDS

Washington, DC 20235

Copy on file at NODC

Telephone (202) 634-7439

Computes Pressure

PRESSR

Language - FORTRAN IV Hardware - IBM 360-65

Computes pressure from latitude, depth, temperature, salinity, and sigma-t. Must be called serially through a cast since the calculation of pressure at each depth after the surface involves the depth, density, and pressure of the preceding depth. Author - Sally Heimerdinger.

Oceanographic Services Branch

National Oceanographic Data Center

NOAA/EDS

Washington, DC 20235

Copy on file at NODC

Telephone (202) 634-7439

Temperature Difference Calculations TEMPDIFF

Language - Assembler

Hardware - IBM 360-65/36K bytes

Takes selected BT's or sections of the BT geofile and sums the temperature difference for each Marsden square, one degree square and month; these may be summed over 10; 15; or 20-meter intervals. Input: BT records sorted by Marsden (ten-degree) squares. Author - Walter Morawski.

Oceanographic Services Branch

Copy on file at NODC

National Oceanographic Data Center

NOAA/EDS Washington, DC 20235

Telephone (303) 634-7439

RSMAS Data Processing and Analysis

Language - FORTRAN*

Programs; Data Management System (DMS)

Hardware - UNIVAC 1106/PDP-11

Data Processing:

DMSED is a general-purpose editor for DMS files; editing may be by hand or by algorithm. (PDP-11)

DMSCHP automatically chops a DMS time series into profiles. (PDP-11)

AACAL aligns, calibrates, and pre-edits data from Aanderaa current meter; output is DMS file. (PDP-11)

MK2CAL transcribes and calibrates Mark II Cyclesonde (unattended current profiler) data; output is DMS file. (PDP-11)

DERIVE appends to a DMS file new quantities derived from the input file; repertoire is expandable. (UNIVAC, PDP-11)

DMSORT concatenates DMS files from various sources, sorts according to selected keys, segments into class intervals, and outputs a DMS file. (UNIVAC)

MATRIX Øl interpolates data in depth-time coordinates to a uniform grid with various input and output options. (UNIVAC)

Data Analysis:

PLSAD computes a wide variety of statistical and dynamical quantities from time series of STD and/or PCM profiles; requires data on a uniform, rectangular grid. (UNIVAC)

IWEG computes internal wave eigenvalues and eigenfunctions. (UNIVAC)

CHRSEC computes dynamical fields and internal wave rays for x, z sections; requires mean sigma-t and mean velocity fields on a common level but otherwise nonuniform grid. (UNIVAC)

SPKTRA computes auto-and cross-spectra by Tukey (correlation) method. (UNIVAC)

CMXSPC computes auto- and cross-spectra in polarized form for single or a pair of complex-valued series; input is selected output of SPKTRA. (UNIVAC)

TIDES4 computes amplitude and phases for specified frequencies by least-squares; for pairs of series, tidal ellipse parameters are computed. (UNIVAC)

METFLX computes all meteorological fluxes from observed meteorological parameters by bulk formulas. (UNIVAC)

EMPEIG1 computes cross covariance matrix and finds its eigenvalue and (orthogonal) eigenvectors. (UNIVAC)

(*Reading and writing DMS files in machine-level language)

Christopher N.K. Mooers or Henry T. Perkins Division of Physical Oceanography Rosenstiel School of Marine and Atmospheric Science University of Miami 10 Rickenbacker Causeway Miami, FL 33149 Available from originator only

Telephone (305) 350-7546

CHEMISTRY

CO2 and D.O. SAT

Language - FORTRAN

Hardware - IBM 360/less than 5000 bytes

Calculates percent saturation of dissolved oxygen and concentration of free $\rm CO_2$. Follows standard methods (American Public Health Association, 1971) for oxygen and Garrels and Christ (1965) for $\rm CO_2$ ("Minerals, Solutions, and Equilibria," R.M. Garrels and C. Christ, Harper and Row). Input: Data cards with sample identification, temperature, pH, phenolphthalein alkalinity, bicarbonate alkalinity, and dissolved oxygen. An average correction factor for total dissolved solids is included in each run. Output: Printed and punched sample identification, temperature, dissolved oxygen, percent saturation, carbonate alkalinity, bicarbonate alkalinity, bicarbonate, $\rm K_1$, and free $\rm CO_2$. "A Computer Program Package for Aquatic Biologists," by Paul J. Godfrey, Lois White, and Elizabeth Keokosky.

Paul J. Godfrey Department of Natural Resources Cornell University, Fernow Hall Ithaca, NY 14850

Copy on file at NODC (listing, documentation)

Telephone (607) 256-3120

Alkalinity ALCT Language - FORTRAN IV Hardware - CDC 3150

Calculates total alkalinity, carbonate alkalinity, pH, and log (k(A)) for a potentiometric alkalinity titration. Endpoints are found by Gram plot method; complete procedure has been described by Dyrssen and Sillen. Input: Paper tape from DATOS data set and ASR-33 Teletype; a set of sample salinities on disk, tape, or cards; one or two cards containing run information. Output: Line printer plots of the titration curves; extensive information about each sample run; and a summary sheet with the four parameters for each sample.

John L. Barron Bedford Institute of Oceanography P. O. Box 1006 Dartmouth, N. S. B2Y 4A2 Available from originator only

Telephone (902) 426-3676

Specific Conductivity with Pressure Effect

Language - FORTRAN Hardware - IBM 360

Computes specific conductivities from measured values of resistance for the electrolytic solution and the pressures at which the measures were made. Also determines other useful quantities needed to determine the effect of pressure on the ionic conductance through the upper 2000 meters of the ocean's water column. The conductivity increase which results solely from solution concentration changes during compression is determined and found to be a significant error source. Thesis by Michael E. Mays, Dec. 1968.

U.S. Naval Postgraduate School Monterey, CA 93940 Available from NTIS, Order No. AD 686 654, \$4.75 paper copy, \$2.25 microfiche.

Percentage Saturation of Oxygen in Estuarine Waters, B528

Language - FORTRAN IV-G Hardware - IBM 360-65

Computes the percentage saturation of dissolved oxygen in estuarine or brackish water. Because of the temperature compensation at a fixed 25 degrees C in the conductivity measurements, salinity is given as input and is used to compute chlorinity. This computed chlorinity, with the

accompanying temperature, is used to determine the oxygen solubility of the water. The maximum percentage saturation of the dissolved oxygen in the water is calculated from the given oxygen content and the computed oxygen solubility. The same procedure is used to ascertain the minimum percentage saturation of oxygen. Independent of the dissolved oxygen data, there is another set of measured temperature and conductivity from which salinity is computed. Author - Patricia A. Fulton.

Computer Center Division U.S. Geological Survey National Center Reston, VA 22092 Copy on file at NODC (listing, documentation)

Telephone (703) 860-7106

Water Chemistry - Dielectric Constant MO101

Language - FORTRAN IV Hardware - IBM 360-65

Calculates the dielectric constant of water (0 to 360 degrees C [water saturated for T over 100 degrees C]), the density of water (0 to 360 degrees C), the extended Debye-Huckel activity coefficients of charged species, the activity products for 33 hydrolysis reactions including oxides, hydroxides, carbonates, sulfides, and silicates, the concentrations and activities of ten ion pairs or complexes, and of 22 aqueous species, the oxidation potential calibrations, the standard state oxidation potentials and Eh values at equilibrium for 13 redox reactions, moles and ppm of cations at equilibrium with 42 solid phases and the chemical potentials for each of the 42 reactions along with activity product/equilibrium constant ratios for the hydrolysis reactions.

Computer Center Division U.S. Geological Survey National Center Reston, VA 22092 Copy on file at NODC (deck, documentation)

Telephone (703) 860-7106

COASTAL AND ESTUARINE PROCESSES

Three-Dimensional Estuarine Circulation Model

Language - FORTRAN IV

Hardware - UNIVAC 1108/40K 6 character words

Produces a fully three-dimensional simulation of estuarine circulation for arbitrary lateral and bottom geometry, inflowing rivers, openings to the sea, salinity, wind effect, and other related parameters.

Alan J. Fuller

Available from originator only

Department of Meteorology (IFDAM) University of Maryland Space Science Building College Park, MD 20742

Telephone (301) 454-2708

Multi-Layer Hydrodynamical-Numerical Model Language - FORTRAN IV

Hardware - CDC 6500/CDC 7600

Computes the current patterns using a two-layer hydrodynamical-numerical model for bays, estuaries, and sections of coastline. This program applies the finite difference hydrodynamic equations to a two-layer system. As optional output, it can produce currents and layer elevation fields, surface pollutant diffusion fields, and detailed special point information. EPRF Tech. Note. 2-74, "A Multi-Layer Hydrodynamic-Numerical Model," by T. Laevastu.

Taivo Laevastu
Environmental Prediction
Research Facility
Naval Postgraduate School
Monterey, CA 93940

Available from originator only

Telephone (408) 646-2937

Single Large Hydrodynamical-

Language - FORTRAN IV Hardware - CDC 6500/IBM 360

Numerical Model Ha

Computes tidal, permanent, and wind-induced flows for bays, estuaries, or sections of the coastline, using the finite difference form of the hydrodynamic equations. Input includes bottom bathymetry and tides at an open boundary. Output: Wave elevation and current speed and direction fields, diffusion of pollutants field, if desired; detailed data for up to twelve points. EPRF Technical Note 1-74, "A Vertically Integrated Hydrodynamical-Numerical Model," by T. Laevastu.

Kevin M. Rabe Available from originator only Research Facility Environmental Prediction
Naval Postgraduate School
Monterey, CA 93940 Telephone (408) 646-2842

Estuarine Model

Language - FORTRAN

Hardware - IBM 370-165/150K characters

Solves a system of non-linear algebraic equations for a vertical plane estuary model. Output: Salinity and two velocity component profiles as a function of two space variables.

L.J. Pietrafesa Center for Marine and Coastal Studies North Carolina State University Raleigh, NC 27607 Available from originator only

Telephone (919) 787-6074

MIT Salinity Intrusion Program

Language - FORTRAN IV

Hardware - IBM 360-65/120 K bytes

Provides predictions of unsteady salinity intrusion in a one-dimensional estuary of varying cross-section, using finite difference solution to the equations of motion and conservation of salt; coupling is accounted for through a density term in the momentum equation. Input: Schematized geometry, upstream inflows as a function of time, ocean salinity and tidal elevations at the ocean. Output: (1) Surface elevations, cross-sectional discharges and salinities as a function of time; (2) high-water slack salinities by tidal cycle; (3) longitudinal dispersion coefficients; (4) plots. Technical Report No. 159, "Prediction of Unsteady Salinity Intrusion in Estuaries: Mathematical Model and User's Manual," by M.L. Thatcher and D.R.F. Harleman, Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, 1972. Also MIT Sea Grant Publications 72-21.

M. Llewellyn Thatcher Southampton College Southampton, NY 11968 Available from MIT or from the author.

Telephone (516) 283-4000

Dynamic Deterministic Simulation SIMUDELT

Language - FORTRAN IV
Hardware - IRM 360/5 tane un

Hardware - IBM 360/5 tape units/CalComp Plotter optional

Simulates growth of a subaqueous deposit where a fresh water stream enters a saline basin. Tidal effects and longshore transport also are included. Input: Stream width and depth, water discharge, sediment load, profile of basin bottom, tidal range, length of tidal cycle, and transport parameter. Output: Tables of particle trajectories, graphs of distribution of different size grains in deposit, plots of delta development in plan, and elevation views.

K. Kay Shearin University of Delaware P.O. Box 2826 Lewes, DE 19958 Available from originator only

Telephone (302) 645-6674

Beach Simulation Model

Language - FORTRAN IV
Hardware - IBM 1130/16K words/3 disks/
CalComp Plotter

A computer simulation model to study relationships among barometric pressure, wind, waves, longshore currents, beach erosion, and bar migration. Fourier series are used to represent major trends in weather and wave parameters. Barometric pressure plotted as a function of time; longshore current velocity computed as function of first derivative of barometric pressure. Nearshore area represented by a linear plus quadratic surface with bars and troughs generated by normal and inverted normal curves. Wave and current energies computed for storm and poststorm recovery periods are used to simulate coastal processes which cause erosion and deposition. A series of maps are produced to show changes in nearshore topography through time. ONR Tech. Report No. 5, "Computer Simulation Model of Coastal Processes in Eastern Lake Michigan," Williams College.

William T. Fox Department of Geology Williams College Williamstown, MA 01267

Available from originator only

Telephone (413) 597-2221

Estuarine Density Currents and Salinity DENSITY

Language - FORTRAN

Hardware - IBM 370-155/250K bytes

Performs numerical calculation of steady density currents and salinities in an estuary in three dimensions by numerical solution of finite-difference equations for a number of quasi-timesteps. Input: Local geometry, depths, tidal currents, latitude, boundary salinities. Output: x-y-z

paper plot of velocities and vector representation of circulation patterns with complementary 35mm color slides. Determines primary orientation of 45° oblique photographs, identifies specific dye patch movements, and averages velocity over a known time span. "Airphoto Analysis of Estuarine Circulation," by H.G. Weise, M.Oc.E. Thesis.

Dennis Best or L.S. Slotta Ocean Engineering Program Oregon State University Corvallis, OR 97331 Available from originator only

Telephone (503) 754-3631

Upwelling CSTLUPWL Language - FORTRAN

Hardware - CDC 6400/150K characters/2 tape units

Provides sigma-t and three velocity component profiles as a function of two space variables for a steady-state, two-dimensional upwelling. Input: Independent variable and independent parameter sizes.

L.J. Pietrafesa Available from originator only Center for Marine and Coastal Studies
North Carolina State University
Raleigh, NC 27607 Telephone (919) 787-6074

Mathematical Water Quality Model for Estuaries

Language - FORTRAN IV Hardware - IBM 360/350K

Computation of water quality parameters of dissolved oxygen, biological oxygen demand, etc., for the Neuse Estuary, North Carolina. Input: Upstream discharge and water quality data. Output: Water levels, velocities, and water quality parameters at downstream locations. Uses numerical solution of shallow-water systems matched with explicit solutions of the mass balance equation. Sea Grant Report, in preparation.

Michael Amein
Dept. of Civil Engineering
North Carolina State University
Raleigh, NC 27607

Available from originator only

Telephone (919) 737-2332

Computation of Flow through
Masonboro Inlet, North Carolina

Language - FORTRAN IV Hardware - IBM 360/350K

Computation of discharges and water levels at complex coastal inlets. Implicit numerical solution of one-dimensional shallow water equations. Input: Tidal elevations at sea, water levels on the land side of inlets. Output: Velocity, discharges, and water levels. Sea Grant Report UNC-SG-73-15. Also, Journal of Waterways and Harbors Div., Proc. ASCE, Vol. 10, No. WW1, February 1975, pp. 93-110.

Michael Amein Dept. of Civil Engineering North Carolina State University Raleigh, NC 27607 Available from originator only

Telephone (919) 737-2332

Circulation in Pamlico Sound

Language - FORTRAN Hardware - IBM 360/320K

Provides the water surface elevations, water velocity plots, and flows through inlets for Pamlico and Albemarle Sounds, North Carolina. Input: Wind fields, inflows, ocean tides.

Michael Amein Department of Civil Engineering North Carolina State University Raleigh, NC 27607 Available from originator only

Telephone (919) 737-2332

Three-Dimensional Simulation Package AUGUR

Language - FORTRAN IV/COMPASS
Hardware - CDC 6400/SCOPE 3.4 Operating System

AUGUR is a general three-dimensional simulation package designed to handle general spatial bookkeeping problems and basic input-output of data, thus leaving the main problem of modeling to the user. The specifications are:

- (1) to handle 1 to a maximum of 33,000 volumes;
- (2) to handle a one-, two-, or three-dimensional space in any one of the following structures:
 - (a) $1 \times 1 \times 1$ (e) NC $\times 1 \times 1$ where NC = maximum volumes along the west to (b) $1 \times NR \times 1$ (f) NC $\times NR \times 1$ east axis
 (c) $1 \times NR \times ND$ (g) NC $\times NR \times ND$ NR = maximum volumes along the south to north axis
 (d) $1 \times 1 \times ND$ (h) NC $\times 1 \times ND$ ND = maximum volumes along the lower to upper axis
- (3) to determine the following information of each volume:
 - (a) corner coordinates
 - (b) volume centroid
 - (c) centroids of the volume's faces
- (d) projected areas onto XY, XZ, and YZ planes of the volume's faces
- (e) the volume measurement
- (4) to allow the user to handle:
 - (a) 1 to 40 state variables in each volume
 - (b) velocities at the centroid of each volume or (but not both) at the centroids of each face of the volume
 - (c) boundary conditions for state variables and velocities
- (5) to allow the user to initialize all state variables and velocities of each volume;
- (6) to allow the user to define the corner coordinates of each volume;
- (7) to set up the space in a right-handed coordinate system;
- (8) to allow free field data input (to a certain extent);
- (9) to use Adams-Bashforth predictor equation for the simulation with Euler's equation as a starter with the option to replace these equations;
- (10) to be able to save the simulated data on tape in order to continue the simulation later on or to plot the data;
- (11) to provide the option of suppressing certain output.

Due to the generality of the specifications, AUGUR requires much more computer core storage than a program written for a specific model. In order to reduce the core requirement, AUGUR has been subdivided into semi-independent parts called overlays, thus allowing only currently needed programs to occupy core while keeping the unneeded ones on disk until later. Further reduction of core is made possible by keeping in core only those data arrays of volumes which are to be used immediately and storing the data arrays of volumes not currently in use on disk. University of Washington Ref. No. M74-88, NSF GX 33502, IDOE/CUEA Technical Report 7, "AUGUR, A Three-Dimensional Simulation Program for Non-Linear Analysis of Aquatic Ecosystems," by D.L. Morishima, P.B. Bass, and J.J. Walsh, November 1974.

Department of Oceanography University of Washington Seattle, WA 98195 Copy on file at NODC (Program code on magnetic tape). Documentation (above report) available from NTIS, Order No. PB 245 566, \$8.00 paper, \$2.25 fiche.

Salinity Distribution in One-Dimensional Estuary, ARAGORN

Language - FORTRAN Hardware -

A model is constructed for an estuary to predict the salinity distribution for a given freshwater inflow, with application to the upper Chesapeake Bay and the Susquehanna River. Based on a salt continuity equation in which the seaward salt advection is balanced by turbulent diffusion toward the head of the bay. In final form, it is a linear, second-order, and parabolic partial differential equation with variable coefficients which are functions of both space and time. Tech. Report 54, Ref. 69-7, by William Boicourt, May 1969.

Cheaspeake Bay Institute The Johns Hopkins University Baltimore, MD 21218 Copy on file at NODC (above report)

Modeling an Ocean Pond

Language - FORTRAN Hardware - IBM 370-155

Models hydrodynamic characteristics of coastal waters, using the Galerkin weighted-residual method through which the finite element scheme can be implemented without a knowledge of the particular variational principle of the governing equation. Marine Technical Report 40, "Modeling an Ocean Pond: A Two-Dimensional, Finite Element Hydrodynamic Model of Ninigret Pond, Charlestown, Rhode Island", by Hsin-Pang Wang, University of Rhode Island, 1975.

Department of Mechanical Engineering and Applied Mechanics University of Rhode Island Kingston, RI 02881 Copy on file at NODC (Above report, includes listing)

Estuarine Chemistry MYACHEM

Language - FORTRAN IV/WATFIV

Hardware - IBM 370

From raw hydrographic data and nutrient chemistry data absorbences, computes actual values as compared with standards, along with instantaneous tide height of station. Estuarine low salinity procedures are applied. Output: Formatted concentrations of nitrite, nitrate, ammonia, urea, dissolved oxygen, silicate, and phosphate. Author - Stephen A. Macko.

B.J. McAlice Available from originator only Ira C. Darling Center (Marine Laboratory)
University of Maine at Orono
Walpole, ME 04573 Telephone (207) 563-3146

Estuarine Tides

Language - WATFIV FORTRAN

TIDES

Hardware - IBM 370

Computes instantaneous tide height, range, and tide character, given corrections. Author - Stephen A. Macko.

B.J. McAlice Available from originator only Ira C. Darling Center (Marine Laboratory)
University of Maine at Orono
Walpole, ME 04573 Telephone (207) 563-3146

Mathematical Model of Coastal Upwelling: Drift, Slope, and Littoral Currents OCEØ1PØ7 Language - FORTRAN IV

Hardware - IBM 360-40/23K bytes

Calculates and prints drift, slope, and littoral current tables, as well as their corresponding

flux tables - a total of 33 tables. Input: Orientation of the coast, latitude of the site, direction of the wind, velocity of the wind. Output: For drift currents, the results are presented in ten tables, corresponding to each tenth of the H/D ratio, where H is the depth of the site and D is the depth of the friction layer (a function of latitude and wind velocity); in each table the drift currents are shown at 20 levels of the local depth; at each level, values for the following elements are given - velocity, angle with the wind, direction, angle with the slope, slope component of velocity, and component of velocity parallel to the coast. The drift fluxes are presented in an eleventh table and calculated at each tenth of the H/D ratio, giving values for the following elements - rate of flow (m³/sec), angle with the wind, angle with the slope, direction, slope component of the rate of flow, and component of the rate of flow parallel to the coast. Slope currents and fluxes and littoral currents and fluxes are presented in tables similar to those of drift currents and fluxes, but without values for angle of currents and fluxes with the wind.

CF Emmanuel Gama de Almeida Diretoria de Hidrografia e Navegacao BCO Nacional de Dados Oceanograficos Primeiro Distrito Naval - Ihla Fiscal Rio de Janeiro - GB-20.000, Brasil

Copy on file at NODC (listing, documentation in English and Portuguese)

Beach and Nearshore Maps

Language - FORTRAN IV Hardware - IBM 1130/8K words

Topographics maps of the beach and nearshore area are computed and plotted based on nine profiles from a baseline across the beach. Profiles are spaced at 100-foot intervals along the beach with survey points at five-foot intervals along each profile. Linear interpolation is made parallel to the baseline between adjacent profiles. Numbers and symbols are printed to form the maps. Profiles for a series of days are used to print maps of erosion and deposition by subtracting elevations for each day from the elevations for the previous day. ONR Tech. Report No. 4, "Beach and Nearshore Dynamics in Eastern Lake Michigan", by Davis and Fox, 1971.

William T. Fox Williams College Department of Geology Williamstown, MA 01267 Available from originator only

Telephone (413) 597-2221

Numerical Model, Dynamics and Kinematics of Partially Mixed Estuaries

Language - FORTRAN Hardware -

A real-time numerical model is developed to describe the dynamics and kinematics of partially mixed estuaries. The governing equations are formally laterally averaged and realistic estuarine bathymetry is included. The external inputs to the model are salinity and tidal amplitude as a function of time at the ocean boundary and the freshwater discharge at the river boundary. The model includes the continuity, salt, and momentum balance equations coupled by equations of state. The numerical technique conserves volume, salt, and momentum in the absence of dissipative effects. Simulations show that using a constant vertical eddy viscosity and diffusivity produce unrealistic salinity distributions, but have minor effects on the surface amplitudes; results from the application of the model to the Potomac Estuary, using a stability dependent eddy viscosity and diffusivity, yield distributions comparable to field observations. Further numerical experimentation illustrates the response of the circulation to changes in the boundary friction and the river discharge. Reference 75-9, Technical Report 91, "A Numerical Investigation into the Dynamics of Estuarine Circulation," by Alan Fred Blumberg, October 1975.

Cheaspeake Bay Institute The Johns Hopkins University Baltimore, MD 21218 Copy on file at NODC (above report)

ENGINEERING

Deep Ocean Load Handling Systems DOLLS

Language - FORTRAN IV Hardware - CDC 6600

Provides a capability to evaluate any selected deep ocean load handling system on the basis of critical mission parameters; allows comparison of candidate systems, development of an optimum system, and sensitivity analyses. Input: Mission objectives, mission scenario, mission parameters, analytical parameters. Output: Scenario with times and costs in individual step and cumulative form. "A Method for Evaluation and Selection of Deep Ocean Load Handling Systems," Vol. I, Final Report, Vol. II, User's Manual; supplementary Letter Report.

L.W. Hallanger

Copy on file at NODC (Deck)

Civil Engineering Laboratory

Naval Construction Battalion Center

Port Hueneme, CA 93043

Telephone (805) 982-5787

Load Motion and Cable Stresses CAB1

Language - FORTRAN IV Hardware - CDC 6600

Determines the transient and/or steady-state load motion and cable stresses in a vertically suspended load due to excitation at top or release from non-equilibrium position. Uses the method of orthogonal collocation in the "length" variable in order to reduce the equations to a set of ordinary differential equations. These are solved by a predictor-corrector method. Input: Cable length, cable density, Ea, load radius, load density, fluid density, added mass and drag coefficient on load (sphere only), initial tension at load, frequency and amplitude of forced motion. Output: Time history of cable tensions, velocities, and time history of load motion.

H.S. Zwibel

Copy on file at NODC (Deck)

Civil Engineering Laboratory Naval Construction Battalion Center

Port Hueneme, CA 93043

Telephone (805) 982-4625

Soil Test Data

TRIAX

Language - FORTRAN IV

Hardware - CDC 6600/100K characters

Uses standard technique for reduction of triaxial soil test data. Input: Axial displacement of sample, axial load, original area, original height, consolidation pressure, volume change, and pore water pressure. Output: Axial strain, pore water pressure change, principal stress difference, A, minor and major principal effective stress, principal stress ratio, P, Q.

H.J. Lee

Copy on file at NODC (Deck)

Civil Engineering Laboratory Naval Construction Battalion Center

Port Hueneme, CA 93043

Telephone (805) 982-5624

Dynamic Stress Response of Lifting Lines, CABANA Language - FORTRAN IV

Hardware - CDC 6600/2 tape units

Predicts dynamic responses of a lift line/payload system with long line length. Response operators are calculated from explicit equations; the output spectrum is used in a statistical calculation to determine the probability distributions. Input: Cable physical properties and elasticity, payload physical descriptions, surface excitation in the form of displacement spectrum or acceleration spectrum. Output: Dynamic tension or payload motion operators as a function of frequency, probability distribution of dynamic tension and motion, and design peak

tension. CEL Technical Report R-703, "Dynamic Stress Response of Lifting Lines for Oceanic Operations," by C.L. Liu, Nov. 1970.

Francis C. Liu
Civil Engineering Laboratory
Naval Construction Battalion Center
Port Hueneme, CA 93043

Telephone (805) 982-4613

Copy on file at NODC (Deck)

Dynamic Response of Cable System

Language - FORTRAN IV

SNAPLG

Hardware - CDC 6600

Determines dynamic responses of a two-dimensional cable system in the ocean with in-line masses, based on lumped mass approximation; equations of motion were solved numerically by predictor-corrector method; cable segment takes tension only. Input: Cable static position, cable physical and elastic properties, in-line mass characteristics, current profile, surface excitation in sinusoidal form. Output: Tension and mass point location as functions of time. CEL Tech. Note N-1288, "Snap Loads in Lifting and Mooring Cable Systems Induced by Surface Wave Conditions," by F.C. Liu, Sept. 1973.

Francis C. Liu

Copy on file at NODC (Deck)

Civil Engineering Laboratory Naval Construction Battalion Center

Port Hueneme, CA 93043

Telephone (805) 982-4613

Changes in Electromechanical Cable RAMSC

Language - FORTRAN IV Hardware - CDC 6600

Determines the internal and external changes of a multi-strand electromechanical cable under end constraints and loadings. Based on helical wire model, equations are solved numerically by progressive iteration. Input: Cable construction details, wire physical properties, external loadings and constraints. Output: Cable end torque or torsion, elongation, internal changes. Note: RAMSC and RADAC have been combined to form program TAWAC.

Francis C. Liu

Copy on file at NODC (Deck)

Civil Engineering Laboratory Naval Construction Battalion Center

Port Hueneme, CA 93043

Telephone (805) 982-4613

End Responses in Electromechanical Gable RADAC

Language - FORTRAN IV Hardware - CDC 6600

Predicts the elongation, end rotation, or end moment of a double-armored electromechanical cable. Based on helical wire model, the problem is solved numerically by progressive iteration. Input: Cable physical and elastic properties, end loadings and/or conditions, detailed description of cable construction. Output: End responses in the form of end moment or end torsions, cable elongation, cable geometric changes, wire tensions. Note: RAMSC and RADAC have been combined to form program TAWAC.

Francis C. Liu

Copy on file at NODC (Deck)

Civil Engineering Laboratory

Naval Construction Battalion Center

Port Hueneme, CA 93043

Telephone (805) 982-4613

Unmanned Free-Swimming Submersible UFSS Plotting Program

Language - BASIC

Hardware - HP 9830A/4K words core/24K words addtional/Plotter plus ROM

Calculates radius of mission possible for theoretical UFSS (Unmanned Free-Swimming Submersible) when internal energy usage (hotel load) is varied. Uses simple iteration to select relative

speed for most efficient energy usage per actual distance covered. Input: Minimum, maximum, and increment on external volume and hotel load of UFSS; responses (yes or no) for speed matrix; response (yes or no) for another run with an ocean current one half knot greater than previous plot. Output: Speed matrix (if desired) up and downstream, matrix of radii covering volume and hotel load variations; graphic output of radii matrix as a function of external volume and hotel load as a parameter. Documentation: OTD-0I-74-02-01.

> Edward J. Finn Available from originator only Ocean Instrumentation Branch Naval Research Laboratory, Code 8422 Washington, DC 20375 Telephone (202) 767-2112

Unmanned Free-Swimming Submersible UFSS Variable Hotel Load

Language - BASIC

Hardware - HP 9830A/2K words

Calculates ranges possible with theoretical UFSS when internal energy usage (hotel load) is varied, using iteration to determine speed for most efficient energy usage per actual distance covered. Input: Minimum, maximum and increment on external volume of UFSS and on hotel load in watts; response to question on desire to have most efficient speeds printed. Output: Matrix of ranges covering volume and hotel load variations; speed matrix (if desired); terminal plot of data in the matrix. Documentation: OTD-01-74-01-01.

> Edward J. Finn Available from originator only Ocean Instrumentation Branch Naval Research Laboratory, Code 8422 Washington, DC 20375

Telephone (202) 767-2112

Unmanned Free-Swimming Submersible

Language - BASIC

Nominal UFSS Program

Hardware - HP 9830A/2K words

Calculates distance covered by theoretical unmanned free-swimming submersible vehicle with specific energy package, using iteration to determine speed for most efficient energy usage per actual distance covered. Output: Data about model; most efficient speed with ocean current and range (one-way) as a function of external volume of the UFSS.

> Edward J. Finn Ocean Instrumentation Branch Naval Research Laboratory, Code 8422 Washington, DC 20375

Available from originator only

Telephone (202) 767-2112

Steady-State Trapezoidal Array Configurations

Language - FORTRAN V Hardware - UNIVAC 1108

Steady-state configurations under forces due to currents are determined. Finite element (lump mass) three-dimensional statics equations are solved using Skop's method of imaginary reactions. NUSC/NL Tech. Memo. SA2302-0170-72, "On the Parameters Governing Steady State Distortion of a Bottom Moored, Subsurface Buoyed, Linear Cable Array in Various Current Fields," by J.D. Wilcox, Sept. 1972.

> J.D. Wilcox Naval Underwater Systems Center New London, CT 06320

Available from originator only

Telephone (203) 442-0771

Anchor Last, Buoy System Development Dynamics

Language - FORTRAN V Hardware - UNIVAC 1108

Equations of motion for a surface or subsurface buoy system initially stretched out are solved

as the anchor is dropped. The equations of motion for buoy, cable (modeled as a number of lump masses) and anchor are integrated in the time domain, using a fourth order Runge-Kutta algorithm. Velocity-squared drag and hydrodynamic masses concentrated at each lump. Input: Physical parameters of items to be modeled. Output: x-z positions, tensions and angles, sequential plots. NUSC/NL Technical Memorandum TA12-134-71, March 1971.

Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Cable-Towed Buoy Configurations in a Turn

Language - FORTRAN V Hardware - UNIVAC 1108

Steady-state configurations under forces due to a ship on a turn are determined. The three-dimensional steady state cable equations are integrated with a fourth order Runge-Kutta algorithm from the towed body up to the ship. Input: Physical parameters of items to be modeled. Output: Buoy attitude x-y-z positions, ship speed, buoy speed, tensions and angles. Three-dimensional plots available. Project CORMORAN Memo 0132 (4.10.3), "Steady State Towline Configurations in a Turn," Sept. 1973.

Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Free-Floating Spar-Array Dynamics Language - FORTRAN V Hardware - UNIVAC 1108

The equations of motion for spar buoy, cable (lump mass model), and an extended three-leg structure are solved in the time domain using a fourth order Runge-Kutta algorithm. Auxiliary computation of spar buoy bending in the waves is included. Input: Physical parameters of the items to be modeled. Output: Spar buoy x-z motions and tilt, hydrophone motions on the ends of the three-leg structure. NUSC/NL Technical Memorandum No. TA12-257-71, Nov. 1971.

Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Free-Floating Spar Buoy Dynamics Language - FORTRAN V Hardware - UNIVAC 1108

The equations of motion for the spar buoy are solved in the time domain using a fourth order Runge-Kutta algorithm. Auxiliary computations of the spar buoy bending due to waves are included. NUSC Tech. Memo. No. TA12-257-71, "The Spar Buoy System," by G.T. Griffin, Nov. 1972. NUSC Tech. Memo. No. 2212-90-67, "A Guide for the Design of Spar Buoy Systems," by K.T. Patton, July 1967.

Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 · Available from originator only

Telephone (203) 442-0771

Ship Suspended Array Dynamics

Language - FORTRAN V Hardware - UNIVAC 1108

Equations of motion for a vertically suspended cable array are solved in the time domain as the ship drifts and responds to waves. The cable is broken up into a elastically connected lump masses, each having two degrees of freedom. The $2 \times n$ equations of motion are solved simultaneously in the time domain using a fourth order Runge-Kutta algorithm. Velocity-squared

viscous forces and hydrodynamic masses are concentrated at each lump. NUSC Tech. Memo. No. 2212-202-68, "A Study of the Stability of the Five-Hydrophone, Ship-Suspended General Dynamics Array," by G.T. Griffin, Oct. 1968.

Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Boomerang Corer Descent/Ascent Trajectories Language -Hardware -

Boomerang corer trajectories due to currents are calculated. The three-dimensional body equations are integrated in the time domain using a fourth order Runge-Kutta algorithm.

Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Buoy-Ship Dynamics

Language - FORTRAN V Hardware - UNIVAC 1108

The equations of motion for the buoy moving in a plane (3-D Heave, Surge and Pitch) and constrained by the A-frame and vangs are solved in the time domain using a fourth order Runge-Kutta algorithm. Ship response to the quasi-random sea state is computed using Lewis's dimensionless RAO's. NUSC letter ser. TA12:83, "Results of First Order Study of Ship-to-Buoy Mooring Study."

Kirk T. Patton or Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Buoy System Dynamics

Language - FORTRAN V Hardware - UNIVAC 1108

Six degree-of-freedom equations of motion for the buoy are solved in the time domain using a fourth order Runge-Kutta integration algorithm. These equations are coupled with the set of partial differential equations for cable dynamics through tensions and velocities at the buoy. The equations of motion for the cable are solved in the space-time domain using a method of characteristics approach, i.e., a modification of Hartree's method. Output motions and tensions for the buoy and along the cable are plotted as power spectra using FFT methods. The program has been used for the design of oceanographic and acoustic buoy systems and for evaluation of NOAA Data Buoy design.

Kirk T. Patton and Gary T. Griffin Naval Underwater Systems Center New London, CT 06320

Available from originator only

(

Telephone (203) 442-0771

Fixed Thin Line Array Dynamics

Language - FORTRAN V Hardware - UNIVAC 1108

Equations of motion for the cable array are solved in the time domain for excitation by currents. The array is broken up into n elastically connected lump masses, each having three degrees of freedom. The 3 x n equations of motion are solved simultaneously, using a fourth order Runge-Kutta algorithm. Velocity-squared viscous forces and hydrodynamic masses are concentrated at each lump.

Kirk T. Patton or Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Fixed Thin Line Array Steady State Configurations Language - FORTRAN V . Hardware - UNIVAC 1108

Steady-state configurations under forces due to currents are determined. The three dimensional steady-state cable equations are integrated using a fourth order Runge-Kutta algorithm. One fiftieth the array length is typically used as the integration step size.

Kirk T. Patton or Gary T. Griffin Naval Underwater Systems Center New London, CT 06320

Available from originator only

Telephone (203) 442-0771

Marine Corer Dynamics

Language - FORTRAN V Hardware - UNIVAC 1108

The equations of motion for a corer free-falling through the water column (or, for the case of a cable-lowered corer, free-falling through its trip height) are integrated in the time domain, using a fourth order Runge-Kutta algorithm. Upon impact with the bottom, frictional forces due to the sediment are introduced and the corer comes to rest. Output: Terminal velocity, velocity at impact, penetration of corer and compaction of recovered sample. "An Analysis of Marine Corer Dynamics," by K.T. Patton and G.T. Griffin, Marine Technology Society Journal, Nov.-Dec. 1969.

Kirk T. Patton and Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Steady-State Buoy System Configurations

Language - FORTRAN V Hardware - UNIVAC 1108

Steady-state configurations under forces due to winds and currents are computed. The three-dimensional cable equations are integrated with a fourth order Runge-Kutta algorithm from the buoy down to the anchor. An iterative method is used to modify the buoy's displacement until the vertical cable projection matches the water depth; 1/1000 the cable length is used as the integration step size. Instrument packages mounted in or on the line can be accounted for also. Output: Buoy drift and cable x-y-z positions, tensions, two angles and stretch as functions of cable length. Three-dimensional plots also available. NUSC Tech. Memo. 2212-212-68, "On the Equilibrium Configuration of Moored Surface Buoys in Currents," by K.T. Patton, Oct. 1968. USL Tech. Memo. 2212-116-69, "A Study of Three NAFI Buoy Moorings," by G.T. Griffin, June 1969. NUSC Tech. Memo. 2212-170-69, "An Analysis of Optimizing NAFI Buoy Shallow Water Moorings," by G. Griffin and P. Bernard, Sept. 1969.

Kirk T. Patton or Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

۲

Telephone (203) 442-0771

Steady-State Subsurface Buoy System Configurations

Å

Language - FORTRAN V Hardware - UNIVAC 1108

Steady-state configurations under forces due to currents are computed. The three-dimensional cable equations are integrated with a fourth order Runge-Kutta algorithm from the buoy down to the anchor; 1/1000th the line length is typically used as the integration step size. Output: x-y-z cable positions, tensions, stretch and angles (all in dimensionless form) as a function of dimensionless cable length. Three-dimensional plots also available. NUSC Report

4379, "Nondimensional Steady State Cable Configurations," by G.T. Griffin, Aug. 1972; NUSC Tech. Memo. TA12-50-73, "Remote Terminal Usage to Compute Subsurface Single Leg Array Configurations" by G.T. Griffin, Nov. 1973.

Kirk T. Patton or Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Towed Array Dynamics

Language - FORTRAN V Hardware - UNIVAC 1108

Equations of motion for the towline, towed array, and drogue are solved in the time domain for response to ship motions, etc. The equations are integrated using a fourth order Runge-Kutta algorithm. The program first computes the steady-state configuration and tensions which serve as initial conditions for the dynamics section. Also, using the steady-state data, the Strouhal excitation frequencies and amplitudes are computed along the towline.

Kirk T. Patton or Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Towed System Configurations

Language - FORTRAN V Hardware - UNIVAC 1108

Steady-state configurations for towed systems are determined. Effects of current and ship turns can be included. The three-dimensional cable equations are integrated with a fourth order Runge-Kutta algorithm from the towed body up to the ship. For steady ship turns, the centrifugal force is also integrated up the cable. 1/100th to 1/1000th the cable length is used as the integral step size. Output: x-y-z positions, tensions, stretch, and angles as functions of cable length. Can be dimensionless. Three-dimensional plots also available. NUSL Tech. Memo. 933-0175-64, "Towline Configurations and Forces" by K.T. Patton, Oct. 1964; NUSC/NL Report No. 4379, "Nondimensional Steady State Cable Configurations," by G.T. Griffin, Aug. 1974; Project CORMORAN Memo. D112/4.10.3, "Two-dimensional Steady-State Towed System Configurations," by G.T. Griffin, March 1973.

Kirk T. Patton or Gary T. Griffin Naval Underwater Systems Center New London, CT 06320

Available from originator only

Telephone (203) 442-0771

Towed System Dynamics

Language - FORTRAN V Hardware - UNIVAC 1108

Equations of motion for the towed body and for the cable (when treated as a lump mass model of n lumps) are solved in the time domain using a fourth order Runge-Kutta algorithm. The towed body is allowed six degrees of freedom, and each cable element has three. "Dynamics of a Cable-Towed Body System," by G.T. Griffin, MS Thesis, University of Rhode Island, Kingston, Jan. 1974.

Kirk T. Patton or Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Trapezoidal Array Deployment Dynamics

Language - FORTRAN V Hardware - UNIVAC 1108

Equations of motion for a trapezoidal array are solved in the time domain as the second anchor is lowered and the ship is underway. The two subsurface buoys and the four cables are broken

up into six elastically connected lump masses, each having three degrees of freedom. The eighteen equations of motion are solved simultaneously in the time domain, using a fourth order Runge-Kutta algorithm. Velocity-squared viscous forces and hydrodynamic masses are concentrated at each lump. NUSC Report No. 4141, "Dynamics of Trapezoidal Cable Arrays," by G.T. Griffin and K.T. Patton, March 1972.

Kirk T. Patton or Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Trapezoidal Array Dynamics

Language - FORTRAN V Hardware - UNIVAC 1108

Equations of motion for a subsurface trapezoidal cable array are solved in the time domain for response to currents. The two subsurface buoys and the three cables are broken up into six elastically connected lump masses, each having three degrees of freedom. The eighteen equations of motion are solved simultaneously using a fourth order Runge-Kutta algorithm. Velocity-squared viscous forces and hydrodynamic masses are concentrated at each lump. NUSC Report No. 4141, "Dynamics of Trapezoidal Cable Arrays," by G.T. Griffin and K.T. Patton, March 1972.

Kirk T. Patton or Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Steady-State Cable Laying

Language - FORTRAN IV Hardware -

The three-dimensional steady-state cable equations are integrated using an Euler method. Ship speed and cable payout rate constant. Output: x-y-z positions of the cable and tensions. "Final Report to NUSL - Analysis of Cable Laying," by J. Schram, 1969.

R. Pierce Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Towed Array Configurations

Language - FORTRAN V Hardware - UNIVAC 1108

Steady-state towed array configurations are computed. The two-dimensional cable equations are integrated with a fourth order Runge-Kutta algorithm from the drogue up to the ship; 1/1000th the total cable length is used as the integrated step size. Output: x-z positions, tensions, stretch, and angle as functions of cable length. Plot routine available.

S. Rupinski Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Cable Configuration

Language - FORTRAN IV Hardware - IBM 1800

Computes the equilibrium configuration and tensions of a cable towing a submerged body for faired, unfaired, and discontinuous (lower part faired) cables. The output on the line printer gives the values of the input data followed by various calculated values. The solution is found for the "heavy general cable" law of cable loadings as described by M.C. Eames (1968). Execution time: About 30 seconds for each case. NIO Program No. 168. Author - Catherine Clayson.

National Institute of Oceanography Wormley, Godalming, Surrey, England Copy on file at NODC (listing, documentation)

GEOLOGY AND GEOPHYSICS

Convection in Variable Viscosity Fluid

Language - FORTRAN IV

Hardware - CDC 6600/140K bytes/Disc/

Tektronix graphics terminal

Computes streamlines, temperatures, and shear heating in a highly viscous fluid of variable viscosity (Earth's upper mantle), relief gravity, and heat flow. "ADI Solution of Free Convection in a Variable Viscosity Fluid," by M.H. Houston, Jr., and J.-Cl. De Bremaecker, Jour. Comp. Phys., Vol. 16, No. 3, 1974.

J.-Cl. De Bremaecker Rice University P.O. Box 1892 Houston, TX 77001

Copy on file at NODC

Telephone (713) 528-4141

Gravitational Attraction, Two Dimensional Bodies, TALWANI 2-D GRAVITY, W9206

Language - FORTRAN IV-H Hardware - IBM 360-65

Calculates the vertical component of gravitational attraction of two-dimensional bodies of arbitrary shape by approximating them to many-sided polygons. The technique is from Talwani, Worzel, and Landisman in J.G.R., Vol. 64(1), 1959. Output: Gravity values are printed in tables; the calculated profile and the observed profile (if one exists) are plotted on the line printer in either a page size plot or an extended plot with the x-axis running down the page. Contains option of units in miles, kilofeet, or kilometers.

> Computer Center Division U.S. Geological Survey National Center Reston, VA 22092

Copy on file at NODC (listing, documentation)

Telephone (703) 860-7106

X-Ray Diffraction Analysis

Language - FORTRAN IV

Hardware - XDS Sigma 7/20K 32 bit words/RAD

Provides mineralogic analysis of marine sediments from X-ray diffraction data. Input: Tape containing data generated by X-ray diffractometer. Output: List of "d" spacings, 20 angles, intensities and peak heights of diffraction maxima, list of minerals and estimated amounts in samples analyzed.

> John C. Hathaway Office of Marine Geology U.S. Geological Survey Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-8700

Sediment Grain Size Analysis

1

Language - FORTRAN IV Hardware - IBM 1130

Calculates statistical parameters for sediment grain size analysis. Moment measures routine (Sheppard's correction applied) from Schlee and Webster (1965); linear interpolation for Folk and Inman Graphic Measures. Input: Phi size, cumulative frequency percent couplets. Output: Moment measure of mean, standard deviation, skewness, kurtosis, Folk Graphic Measures, Inman Graphic Measures, mode and median values, histogram plots.

> Gerald L. Shideler U.S. Geological Survey P.O. Box 6732 Corpus Christi, TX 78411 Telephone (512) 888-3241

Program maintained by: Computer Center Division U.S. Geological Survey Federal Center Denver, CO 80225

Magnetic Anomalies MAG2D

Language - FORTRAN IV Hardware - XDS Sigma 7/32K 32 bit words/ Plotter

Computes theoretical magnetic anomalies for two-dimensional bodies magnetized in any specified direction. Vertical, horizontal, and total field anomalies are computed at a series of observation points equally spaced along a profile. A graphic display of the anomaly and the bodies may be output to the CalComp or Versatec Plotter. A line printer plot of the anomaly is made. Modification of program by W.B. Joyner, USGS, Silver Spring, MD. Requires Woods Hole Oceanographic Institution subroutines, MOVE, AXIS, SYMBOL, NUMBER and PLOTDFER.

James M. Robb U.S. Geological Survey Office of Marine Geology Woods Hole, MA 02543 Copy (main program) on file at NODC (listing, documentation)

Telephone (617) 548-8700

Geophysical Data Reduction and Plotting Programs

Language - OS3 FORTRAN IV/COMPASS Hardware - CDC 3300

A system of programs to process and plot marine gravity, magnetic, and bathymetric data. The programs check for data errors, merge geophysical data with navigation, and plot the processed data as profiles or on computer-generated Mercator projection charts. Tech. Report. No. 180, by M. Gemperle and K. Keeling, May 1970.

Geophysics Group School of Oceanography Oregon State University Corvallis, OR 97331 Available from originator only

Processing and Display of Marine Geophysical Data Language - OS3 FORTRAN IV/COMPASS

Hardware - CDC 3300

A system of programs to process and plot marine gravity, magnetic, and bathymetric data using improved navigation techniques and standard data formats. The navigation programs use EM Log and Doppler Speed Log data and gyro headings combined with Magnavox 706 satellite navigator fixes to determine data point positions and Ectvos corrections. All outputs from processing programs and inputs to plotting programs are in standard NGSDC format for marine geophysical data. Tech. Report. by M. Gemperle, G. Connard, and K. Keeling (in press, 1975).

Geophysics Group School of Oceanography Oregon State University Corvallis, OR 97331 Available from originator only

Marine Seismic Data Reduction and Analysis

Language - OS3 FORTRAN IV Hardware - CDC 3300

A series of programs to reduce, display, and analyze marine seismic data. These data include reversed and single-ended seismic refraction, wide-angle reflection, and marine micro-earth-quakes. Supplementary programs compute seismic wave arrival times and distances using theoretical earth models consisting of plane dipping layers. Tech. Report by S.H. Johnson et al (in press, 1975).

Geophysics Group School of Oceanography Oregon State University Corvallis, OR 97331 Available from originator only

A Library of Geophysics Subroutines GLIB

Language - OS3 FORTRAN IV/COMPASS

Hardware - CDC 3300

The library consists of various subroutines commonly used in geophysical data reduction and plotting and not available in the OS3 FORTRAN library. The subroutines fall into five general categories: (1) Plotting - general purpose plotter subroutines, (2) Time and data conversion, (3) Arithmetic functions not contained in the OS3 FORTRAN library, (4) File control programs peculiar to the OS3 operating system, (5) Miscellaneous subroutines. Tech. Report by K. Keeling, M. Gemperle, and G. Connard (in press, 1975).

Geophysics Group School of Oceanography Oregon State University Corvallis, OR 97331 Available from originator only

Reduction, Display and Storage of Navigation, Language - FORTRAN IV (most of the programs)
Gravity, Magnetic and Depth Data Hardware - IBM 1130/Peripherals described below

Processes data recorded by a data logger, prepares profiles and maps, and provides reduced data in a form suitable for data banking and interpretation. The first stage of the processing is to de-multiplex the data to separate disk files, and at the same time automatically edit where possible and flag errors that occur. The second stage is to filter data affected by ship motion, and the third stage is to optimize the navigation by merging dead-reckoning, hyperbolic or satellite data, and from this calculate depths, and gravity and magnetic anomalies. Graphical presentation of the data is in the form of profiles and maps. The maps include the ship's track and posted geophysical values or profiles along the ship's track. The finally reduced data may be stored on magnetic tape in any of the International Geophysical Data Exchange Formats. With this system it is possible to reduce data and produce maps and final reports within three weeks of the end of the survey. The complete system can be used at sea with one engineer and one operator/programer, or the data logger alone may be used at sea and then only an engineer would be required.

The IBM 1130 has a central processing unit with 8K 16-bit words of core storage, an integral disk drive, and a console typewriter. Peripherals include two extra IBM disk drives, a Data Disc fixed-head disk drive, Tektronix Model 4012 visual display unit with a Tektronix Model 4610-1 hard copy unit, a 76 cm CalComp drum plotter, Facit punch tape input/output, and two RDL Series 10500 magnetic tape decks. A Data Dynamics 390 teletypewriter is used for off-line punch tape preparation and, when necessary, as a remote terminal via a Modem linked in parallel with the visual display unit.

Equipment that has been successfully interfaced with the Decca Data Logger include a Decca Main Chain Mk 21 Receiver, Decca Hifix, Sperry Gyrocompass Mk 227, Microtechnica Gyrocompass, LaCoste and Romberg Shipborne Gravity Meter, Askania Gss2 and Gss3 Gravity Meters, Anschutz Gyro-Stabilized Platform, Barringer Proton Magnetometer, Edo-Western Precision Depth Recorder (333C-26) linked to an Edo-Western Digitrack (261C), Two-Component Magnetic Log, Walker Electric Log, and a Marquart Doppler Sonar 2015A.

"Computer System for Reduction, Display and Storage of Navigation, Gravity, Magnetic and Depth Data Recorded in Continental Shelf or Deep-Ocean Areas," a series of twelve software manuals, produced by the Department of Geodesy and Geophysics, Cambridge University, Oct. 1974, under contract to the National Environment Research Council.

Computer Unit Institute of Oceanographic Sciences Research Vessel Base, No. 1 Dock Barry, South Glamorgan, Wales, UK Copy on file at NODC (Above manuals)

Computation and Plotting of Magnetic Anomalies and Gradients

Language - FORTRAN II Hardware - IBM 7094/CalComp plotter

Computes the anomaly profiles for total field, horizontal and vertical components, first and second vertical derivatives, and first and second horizontal derivatives over a uniformly magnetized two-dimesional polygon of irregular cross-section. Output may be printed or plotted. "Potential Applications of Magnetic Gradients to Marine Geophysics," by William E. Byrd, Jr., June 1967; program modified and expanded from Talwani and Heirtzler (1964).

Department of Geology and Geophysics Massachusetts Institute of Technology Cambridge, MA 02139 Available from NTIS, Order No. AD 655 892/LK, \$5.75 paper, \$2.25 microfiche.

Geomagnetic Field MFIELD

Language - FORTRAN IV Hardware - XDS Sigma 7/372 32 bit words*

Calculates regional total geomagnetic field at a specified latitude and longitude and time. Subroutine is initialized with the harmonic coefficients from any specified input device via a separate subroutine. Shared variables are placed in COMMON. (See I. A. G. A. Commission 2, Working Group 4, 1969. International Geomagnetic Reference Field 1965. J. Geophys. Res., 74, pp. 4407-4409) *Subroutine COEFF requires 271 words.

Robert C. Groman Woods Hole Oceanographic Institution Woods Hole, MA 02543

Available from originator only Telephone (617) 548-1400, ext. 469

Marine Geophysical Data Reduction

Language - FORTRAN IV Hardware - IBM 360-65

Corrects soundings for sound velocity variations (if desired), computes residual magnetic anomalies from magnetic total-intensity values, and reduces marine gravity values to free-air anomalies corrected for Eotvos effect and drift. Each geophysical data point is associated with a date-time group, a geographic position, and an approximate mileage along track. The output is in the form of separate magnetic tapes and listings each for bathymetric, magnetic, and gravity data, in a format suitable for direct input to display or analytical programs. NOAA Technical Memorandum ERL AMOL-11, "A Computer Program for Reducing Marine Bathymetric, Magnetic, and Gravity Data," by Paul J. Grim, Atlantic Oceanographic and Meteorological Laboratories, Miami, Florida, January 1971.

Paul J. Grim, Code D621 Copy on file at NODC (Above report, with Marine Geology and Geophysics Branch listing)
National Geophysical and SolarTerrestrial Data Center, NOAA/EDS
Boulder, CO 80302

Plots Profiles of Bathymetry and Magnetic or Gravity Anomalies

Language - FORTRAN IV Hardware - IBM 360-65/CalComp 563 Plotter

Produces bathymetric and magnetic anomaly profiles in a form suitable for publications with little or no additional drafting. The horizontal scale can be the distance along the trackline in nautical miles or kilometers, or degrees of latitude or longitude. The input consists of digitized bathymetric and magnetic anomaly data on separate magnetic tapes. The horizontal and vertical axes of the profiles are determined automatically with reference to the maximum and minimum values of the input data. Control cards contain variables that further determine how the data are to be plotted. The program can also be used for plotting gravity anomaly profiles by substituting the gravity anomaly in milligals for the magnetic anomaly in gammas on the input tape. One of the control card variables causes the vertical axis to be labeled either gammas or milligals. Magnetics and bathymetry can be plotted together (the bathymetry is always below the magnetics) or either can be plotted separately. In addition, the same data can be replotted in a different manner (for example, with a different vertical exaggeration) if desired. ESSA Technical Memorandum ERLTM-AOML 8, "Computer Program for Automatic Plotting of Bathymetric and Magnetic Anomaly Profiles," by Paul J. Grim, Atlantic Oceanographic and Meteorological Laboratories, Miami, Florida, July 1970.

Paul J. Grim, Code D621 Copy on file at NODC (Above report, with Marine Geology and Geophysics Branch listing)
National Geophysical and SolarTerrestrial Data Center, NOAA/EDS
Boulder, CO 80302

Lists Raw Data ZLIST Language - Hardware - UNIVAC 1108

Lists a single file of MG&G standard raw data tape, according to a standard format. Requires subroutine DLIST (HRMIN). Author - R.K. Lattimore.

Director, Marine Geology and Geophysics Atlantic Oceanographic and Meteorological Laboratories/NOAA 15 Rickenbacker Causeway Miami, FL 33149 Available from originator only

Telephone (305) 361-3361

Plots Trackline QCKDRAW

Language -

Hardware - UNIVAC 1108

Using as input the standard MG&G navigation cards, plots a trackline with or without tick marks delineating time intervals. The user is given external control of the map size, latitude and longitude map boundaries, the number of files to be mapped, the time marks, and annotation. The trackline is plotted up to the boundary limits specified, allowing the user to plot only a sector of the navigation deck loaded. Because the size of the actual plotting sheet is 28 inches, internal boundaries may also be required. In this case, bookkeeping devices within the program will assign trackline to the appropriate submaps and plot each in sequence. Author - J.W. Lavelle.

Director, Marine Geology and Geophysics Atlantic Oceanographic and Meteorological Laboratories/NOAA 15 Rickenbacker Causeway Miami, FL 33149 Available from originator only

Telephone (305) 361-3361

Plots Contour-Crossing Intervals DOUBLX

Language -

Hardware - UNIVAC 1108

Calculates contour-crossing intervals, determine highs and lows along a trackline, and plots both, using as input a USA Standard format data tape. Annotation of the extreme is also provided. The user is given control of the map size, the latitude and longitude boundaries, the number of files to be mapped, the contouring interval, and the data field from which the data is chosen. If the data which are being handled require more than one plotting sheet, an appropriate choice of latitude and longitude boundaries will allow the entire job to be handled at one time, with the plots drawn consecutively. Author - J.W. Lavelle.

Director, Marine Geology and Geophysics Atlantic Oceanographic and Meteorological Laboratories/NOAA 15 Rickenbacker Causeway Miami, FL 33149

Available from originator only

Telephone (305) 361-3361

Plots Geophysical Data PLOTZ Language -

Hardware - UNIVAC 1108

Produces a plotter tape to display raw depth, magnetic, or gravity data vs. time, with the aspect-ratio automatically determined to facilitate comparison with the original records. Scale factor (fathoms, gammas, or gravity meter units per inch) must be specified; if maximum and minimum values are not specified, the raw data will be scanned and the values determined. Requires subroutines LIMITS, DIGICT, HRMIN, PLOT (includes PLOTS and FACTOR), NUMBER, SYMBOL. Author - R.K. Lattimore.

Director, Marine Geology and Geophysics Atlantic Oceanographic and Meteorological Laboratories/NOAA 15 Rickenbacker Causeway Miami, FL 33149

Available from originator only

Telephone (305) 361-3361

Lists Every Hundredth Value

Language -

SNOOP

Hardware - UNIVAC 1108

Scans a tape containing data in the standard MG&G format, listing every 100th value and the last value before an end-of-file mark. Author - R.K. Lattimore.

> Director, Marine Geology and Geophysics

Available from originator only

Atlantic Oceanographic and

Meteorological Laboratories/NOAA

15 Rickenbacker Causeway

Miami, FL 33149

Telephone (305) 361-3361

Navigation Computations

Language -

TPNAV

Hardware - UNIVAC 1108

Accepts standard MG&G navigation data cards, computes course and speed made good and Eotvos correction between adjacent positions, compares this with input course and speed if given; creates a binary tape with position, azimuth, and distance information required for interpolation of position in programs FATHOM, GAMMA, and GAL. Author - R.K. Lattimore.

> Director, Marine Geology and Geophysics Atlantic Oceanographic and Meteorological Laboratories/NOAA

15 Rickenbacker Causeway

Miami, FL 33149

Available from originator only

Telephone (305) 361-3361

Edits Geophysical Data

Language -

ZEDIT

Hardware - UNIVAC 1108

Performs two editing functions on MG&G standard raw data tape: (a) Deletion by index number; (b) insertion of new data by date-time group; such data can be put on tape (e.g., output from program HANDY) or in card format, one value per card. Data to be inserted must be ordered by date-time group. Requires subroutines DLIST (HRMIN). Author - R.K. Lattimore.

> Director, Marine Geology and Geophysics Atlantic Oceanographic and Meteorological Laboratories/NOAA 15 Rickenbacker Causeway

Available from originator only

Miami, FL 33149

Telephone (305) 361-3361

Geophysical Data Conversion HANDY

Language -

Hardware - UNIVAC 1108

Converts data in the MG&G standard data-card format to a binary tape suitable for input to the raw-data editing, evaluation, and processing programs (e.g., FATHOM, PLOTZ, ZEDIT). Requires subroutine DLIST (HRMIN). Author - R.K. Lattimore.

Director, Marine Geology and Geophysics Atlantic Oceanographic and Meteorological Laboratories/NOAA 15 Rickenbacker Causeway Miami, FL 33149

Available from originator only

Telephone (305) 361-3361

Lists Geophysical Data

LISTP

Language -

Hardware - UNIVAC 1108

Lists the contents of a tape containing one or more files of reduced marine geophysical data. Require subroutine PPLIST (modification of PTLIST). Author - R.K. Lattimore.

Director, Marine Geology and

Available from originator only

Geophysics

Atlantic Oceanographic and

Meteorological Laboratories/NOAA

15 Rickenbacker Causeway

Miami, FL 33149

Telephone (305) 361-3361

Course, Speed, Eotvos Correction

Language -

LOXNAV

Hardware - UNIVAC 1108

Accepts standard MG&G navigation data cards, computes courses and speed made good and Eotvos correction between adjacent positions,; if course and speed are given on input, compares input with computed values. Author - R.K. Lattimore.

Director, Marine Geology and

Available from originator only

Geophysics

Atlantic Oceanographic and

Meteorological Laboratories/NOAA

15 Rickenbacker Causeway

Miami, FL 33149

Telephone (305) 361-3361

Converts Geophysical Data

PHONEY

Language -

Hardware - UNIVAC 1108

Converts marine geophysical data from 120-column image (10 images to the block), even-parity BCD on 7-track tape (produced by program UNIFOO on the CDC 6600) to the standard MG&G storage format. Author - R.K. Lattimore.

Director, Marine Geology and

Available from originator only

Geophysics

Atlantic Oceanographic and

Meteorological Laboratories/NOAA

15 Rickenbacker Causeway

Miami, FL 33149

Telephone (305) 361-3361

Sound Velocity Variation and Navigation

Language -

FATHOM

Hardware - UNIVAC 1108

Given smooth-track navigation data and sounding values indexed by time, the program corrects for sound-velocity variation (if desired), ship's draft (if desired), and computes latitude, longitude, and distance along track for each observation; the output is in the standard MG&G reduced-data format. Requires subroutines GP, HRMIN, QUIT (TPLIST). Author - R.K. Lattimore.

A

Director, Marine Geology and Geogphysics Atlantic Oceanographic and Meteorological Laboratories/NOAA 15 Rickenbacker Causeway Miami, FL 33149

Available from originator only

Telephone (305) 361-3361

Regional Field, Residual Magnetic Anomaly GAMMA

Language -Hardware - UNIVAC 1108

Given smooth-track navigation data and total-field magnetic measurements indexed by time, the program computes regional field, residual magnetic anomaly, latitude, longitude, and distance along track for each observation. Output is in the standard MG&G reduced-data format. The regional field is computed as follows: For each input navigation point, or for each 20 n.m. interval along track (if navigation points are farther apart), a regional-field value is computed according to the method of Cain et al using the IGRF 1965 parameters. Regional field values for each observation are interpolated linearly. Requires subroutines FIELD, GOFIND, GPMAG, HRMIN, SETUP, QUIT (TPLIST). Author - R.K. Lattimore.

Director, Marine Geology and Geophysics Atlantic Oceanographic and Meteorological Laboratories/NOAA 15 Rickenbacker Causeway Miami, FL 33149

Available from originator only

Telephone (305) 361-3361

Gravity GAL Language -Hardware - UNIVAC 1108

Given smoothed-track navigation data and gravity meter dial readings indexed by date/time, this program will (1) compute Ectvos correction between adjacent navigation points; (2) reduce the dial reading to observed gravity corrected for instrument drift and Ectvos effect; (3) determine latitude, longitude, and distance along track for the observations; (4) compute the free-air anomaly from the 1930 International formula for theoretical gravity. Requires subroutines GOFIND, GPGAL, HRMIN, QUIT (TPLIST). Author - R.K. Lattimore.

Director, Marine Geology and Geophysics Atlantic Oceanographic and Meteorological Laboratories/NOAA 15 Rickenbacker Causeway Miami, FL 33149 Available from originator only

Telephone (305) 361-3361

Plots Profiles of Geophysical Data DISPLOT

Language - Hardware - UNIVAC 1108/offline CalComp plotter

This program will scale and generate the necessary plotter commands to produce a graph of sounding, depth, magnetic or gravity value vs. distance along track. The source data consist of as many as four magnetic tapes containing unformatted standardized geophysical data, such as are produced by MG&G reduction programs (Grim, 1971). As many as nine Y-quantities may be plotted against one X-axis. Options provide for: (1) converting distance in nautical miles to kilometers; (2) scanning the data and annotating the upper X-axis, at the appropriate point, with crossings of even degrees of latitude or longitude; (3) omitting all axes; (4) plotting the profile reversed, or from right to left against distance values which increase from left to right; (5) drawing the zero Y ordinate; and (6) "Assembling" a single profile from more than one source, i.e., from different places on a single tape, or from different tapes. The input data are not edited. Multiple profiles may overlap one another as indicated by space limitations or aesthetics. NOAA Technical Memorandum ERL AOML-11, "A Computer Program for Reducing Marine Bathymetric, Magnetic, and Gravity," by Paul J. Grim, January 1971. Author - Robert K. Lattimore, October 1971.

Director, Marine Geology and Geophysics Atlantic Oceanographic and Meteorological Laboratories/NOAA 15 Rickenbacker Causeway Miami, FL 33149 Available from originator only

Telephone (305) 361-3361

Converts Digitizer Data

Language -

DYGYT

Hardware - UNIVAC 1108

Converts digitizer data on punched cards to MG&G standard raw-data tape. Requires subroutine DLIST (HMRMIN). Authors - Developed by J.W. Lavelle, modified for 1108 by R.K. Lattimore.

Director, Marine Geology and Geophysics Atlantic Oceanographic and Meteorological Laboratories/NOAA 15 Rickenbacker Causeway Miami, FL 33149

Available from originator only

Telephone (305) 361-3361

Edits Reduced Geophysical Data

Language -

EDIT

Hardware - UNIVAC 1108

Performs editing operations on a file of reduced marine geophysical data as follows: (a) Deletions (maximum 2,000); (b) insertion of new data or modification of single points (maximum 1,500); (c) block adjustments to Z1, Z2, Z3, Z4 (maximum 1,500 points). The total number of editing operations may not exceed 2,499; with the exception of deletions; like operations must be grouped together and ordered by index number. Permitted modifications (b above) include replacing Z1, Zr on a card, interpolating geographic position and mileage given date/time and Z1-Z4, and insertion of completely-specified data, i.e., date/time, latitude, longitude, distance along track, Z1, Z2, Z3, Z4. Requires subroutines QUE, QTWO, QUETWO, DAY, TPLIST. Author - R.K. Lattimore.

Director, Marine Geology and Geophysics Atlantic Oceanographic and Meteorological Laboratories/NOAA 15 Rickenbacker Causeway Miami, FL 33149

Available from originator only

Telephone (305) 361-3361

Seamount Magnetization

Language - FORTRAN Hardware - IBM 7074

Computes the magnitude and direction of magnetization of a uniformly magnetized body from its shape and magnetic intensity. OS No. 53533. Author - G. Van Voorhis.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

Observation Draping (Gravity)

Language - FORTRAN Hardware - IBM 7074

Reduces observation data taken with Lacoste-Romberg sea/air or submarine gravimeters to observed gravity value and free-air anomaly. Interpolates geographic position from smoothed fix, course, and speed. Generates BC chart and x,y coordinates for Mercator projection for each station. OS No. 53543. Author - R.K. Lattimore.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

True Ocean Depth FATHCR

Language - FORTRAN

Hardware - UNIVAC 1108/10K words

Given the Fathometer depth and velocity profile, computes the true ocean depth. The velocity profile is broken into constant gradient segments, the travel time integrated along the profile, and the profile is extrapolated to continue to the estimated travel time of the Fathometer record.

Peter D. Herstein

Available from originator only

Naval Underwater Systems Center New London, CT 06320

Telephone (203) 442-0771, ext. 2305

Plots Track and Data Profile TRACK

Language - FORTRAN

Hardware - CDC 3600/3800

Plots a track and the superimposed bathymetry or magnetic profile on a polar stereographic projection. This profile series is plotted perpendicular to the track, using uncorrected meters or fathoms. Input: Data on tape, map parameters, and command words via cards.

James V. Massingill Environmental Sciences Section Naval Research Laboratory Washington, DC 20375 Available from originator only

Telephone (202) 767-2024

GEODATA

Language - FORTRAN

Hardware - CDC 3600/3800

Stores navigation, bathymetry, and magnetic data on magnetic tape in BCD form. Uses the format recommended by the National Academy of Sciences.

James V. Massingill Environmental Sciences Section Naval Research Laboratory Washington, DC 20375 Available from originator only

Telephone (202) 767-2024

Geophysical Data Storage and Retrieval

Language - FORTRAN IV

Hardware - CDC 3150/32K words/Disk/3 tape units

Data storage and retrieval system for BIO's geophysical data. The programs sort, edit, merge, and display data recorded at sea. Input: Magnetic tapes from BIODAL shipboard data logging system, bathymetry data on punched cards, and navigation data. Output: Magnetic tape containing all information recorded during cruises relevant to processing of geophysical data, sorted by geographical location. Computer note BI-C-73-3.

Larry Johnston
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Available from originator only

Telephone (902) 426-3410

Magnetic Signatures MAGPLOT

Language - FORTRAN

Hardware - CDC 3600/CDC 3800/706,768 words/On-

line plotter

Separates and characterizes the various components of magnetic noise in magnetometer records taken from a sensor towed at sea. Gives a printout of histogram data for each of three wavelength filters: N (amplitude) vs. amplitude; N (wavelength) vs. wavelength. Also produces plots of filtered magnetic fields as function of distance. Program is briefly described in NRL Formal Report No. 7760, "Geological and Geomagnetic Background Noise in Two Areas of the North Atlantic."

Perry B. Alers Naval Research Laboratory Washington, DC 20375 Available from originator only

Telephone (202) 767-2530

Sediment Size

Language - FORTRAN

Hardware - UNIVAC 1108/9K 36 bit words

Produces frequency distributions for soil particle size values; applied to marine sediments.

Joseph Kravitz U.S. Naval Oceanographic Office Washington, DC 20373 Copy on file at NODC (deck with documentation)

Telephone (202) 433-2490

Bottom Sediment Distribution Plot

Language - FORTRAN V
Hardware - UNIVAC 1108/23K/Drum/3 tape units/
CalComp 905/936 system

Produces a plot of bottom sediment notation on a Mercator projection, and a list of all data, including cores, within specified area.

William Berninghausen
U.S. Naval Oceanographic Office
Washington, DC 20373

Copy on file at NODC (deck with documentation)

Telephone (301) 763-1189

Sand, Silt, and Clay Fractions DSDP/GRAIN

Language - ALGOL

Hardware - Burroughs 6700/19K words

Computes sand, silt, and clay fractions in sediments. The laboratory method consists of dispersing the sediment in Calgon solution, sieving the sand fraction, and pipetting the silt and clay fractions. Input: Three card files for laboratory data and one card file for interpreting an identifier attached to each sediment sample. Output: Listing with option for ternary plots and punched cards.

Peter B. Woodbury
Deep Sea Drilling Project
Box 1529
La Jolla, CA 92037

Available from originator only

Telephone (714) 452-3526

Soil and Sediment Engineering Test Data

Language - FORTRAN II-D

Hardware - IBM 1620 II/IBM 1627 Model I Plotter

Engineering Index of Core Samples: Reduces data and tabulates results for tests on bulk wet density, vane shear strengths, original water content, liquid limit, plastic limit, and specific gravity of solids; in addition, from the above results, other index properties are simultaneously computed and tabulated; the output table lists results in columns representing each depth segment analyzed.

Grain Size Analysis with Direct Plotting: Input data are sample identification, sample weights, hydrometer readings, and sieve readings. Output on plotter is a particle size distribution curve. Another program provides output on cards of a table with proper headings and values for particle diameters and percent finer by weight.

Carbonate - Organic Carbon Analysis of Sediments: Reduces data from the carbon determinator and tabulates results of the analysis of deep ocean sediments for carbonate and organic carbon percentages; output is in same format as in program for engineering index properties, to which the output from this program is added.

Direct Shear Test with Direct Plotting: Reduces data and plots shear stress vs. shear displacement with appropriate headings and labels; another program, Direct Shear Test, uses the same data formats but presents the results in the form of tabulations rather than plots.

Triaxial Compression Test with Direct Plotting: Reduces the data from triaxial compresssion tests and plots stress vs. strain with headings for sample identification, lateral pressure, etc. Another program reduces the same raw data and presents the results in the form of tabulations, one for each test.

Consolidation Test (E vs. log time plot): Reduces the data obtained from consolidation test readings. Input includes sample identification and characteristics and test characteristics. The output is in two forms: plots and punched cards. The log of time is plotted vs. the void ratio. The cards are used as input to the next consolidation test program.

Consolidation test (E vs. log P and C(V) vs. log P plots): Develops plots for void ratio vs. log of pressure and coefficient of consolidation vs. log of pressure. The input consists of output cards from the previous program, together with the values of void ratio and pressure at 100% consolidation and the time and void ratio at 50% consolidation. These data were obtained from the plots of void ratio vs. log of time in accordance with the Terzaghi consolidation theory.

Permeability Test with Direct Plotting: Reduces test data and plots curve of permeability vs. time with appropriate headings and labels. The plotting scale is a variable incorporated in the program since permeability values for fine-grained soils vary throughout a wide range.

Settlement Analysis: Estimates settlement values from laboratory test results, for deep ocean foundation investigations. Input: Sediment properties and structure characteristics. Output: A table listing total settlement, footing dimensions, structure load, change in thickness of incremental layers and corresponding depth in sediment, initial stress, and change in stress.

Summary Plots: Plots the results from the laboratory analysis of core samples. The input data are the output results on cards from the previous programs and miscellaneous analyses. Since the link system of programing is used, the items to be plotted can be increased or decreased with slight modifications, depending on the user's requirements. Output is a sequence of plots. The depth into the sediment column is plotted with reference to the ordinate, and the various properties along the abscissa on variable scales.

NCEL Report No. R 566, "Computer Reduction of Data from Engineering Tests on Soils and Ocean Sediments," by Melvin C. Hironaka.

Civil Engineering Laboratory Available from NTIS Order. No. AD 666 311, Naval Construction Battalion Center \$5.75 paper, \$2.25 microfiche.

Port Hueneme, CA 93043

BIOLOGY

WHOI Biology Series

Language - FORTRAN IV

Hardware - XDS Sigma 7/plotter optional

FTAPE
FLISHT
CHKSPIT
SELECT
CHANAT
PREPLOTG
PLOTSPECG
STATAB

9,000 words 9,054 words 32,430 words 58 words 16,751 words 12,200 words 18,000 words 4,164 words

FTAPE generates a tape containing station data, species data, and systematic order information. FLISHT prints a list in systematic order of the species from the tape, including stations, numbers, sizes, and weights, with a final summary. Subsets can be specified with subroutine SELECT.

CHKSPIT summarizes catch information from any specified set of stations on the tape made by FTAPE, including data for all species, a listing of the top-ranking species by number and weight, various diversity indices, and percent similarity between sets. CHANAT analyzes a transect for faunal breaks, following the method of Backus et al (1965, "The Mesopelagic Fishes Collected during Cruise 17 of the RV CHAIN, with a Method for Analyzing Faunal Transects," Bull. Mus. Comp. Zool. Harvard, 134 (5):139-158), using the data on the tape made by FTAPE.

PREPLOTG and PLOTSPECG plot a distribution map for any species on the tape made by FTAPE, with indications of vertical distribution, catch rates, and negative data; the two programs must run together; input includes a tape from NODC with world map outlines; output can be plotted on CalComp or Versatec Plotters.

STATAB prints in readable format the information contained in the station data file made by FTAPE or on the input cards.

R.L. Haedrich Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-1400, ext. 354

Optimal Ecosystem Policies OEP

Language - FORTRAN

Hardware - IBM 370/180K/REGION=180

To approximate optimal management policy for an aquatic stream ecosystem, program produces a sequence of converging values of an objective function, optimal values of decision variables, and simulation of the ecosystem using optimal decisions. Input: Parameter values (defaults built in), program constants, species interaction matrices. Deterministic or Monte Carlo simulations (user specified) are fit to state equations, from which the optimal policy is found using the discrete maximum principle.

Robert T. Lackey
Department of Fisheries and
Wildlife Sciences
Virginia Polytechnic Institute
and State University
Blacksburg, VA 24601

Available from originator only

Telephone (703) 951-6944

Inverse Problem in Ecosystems Analysis

Language - FORTRAN IV

Hardware - UNIVAC 1108/10K 6 character words

Performs systematic analysis and modeling of interacting species in complex ecosystems, using a

previously unpublished iterative technique for regression analysis as well as statistical hypothesis testing. Input: a user-written subroutine defining the general structure of the ecosystem and a set of species population vs. time data to be analyzed. Output: A mathematical model of the ecosystem which has the most simple structure adequate to explain the observations. For an example, see "A Systematic Approach to Ecosystems Analysis," by Curtis Mobley, J. Theoretical Biology, 41, 119-136 (1973). Program documentation in NRI Tech. Ref. 72-84.

Curtis Mobley Dept. of Meteorology (IFDAM) University of Maryland College Park, MD 20742 Available from originator only

Telephone (301) 454-2708

Toxicity Bioassay PROBIT ANALYSIS

Language - FORTRAN IV Level G Hardware - IBM 360/4K bytes

A routine method for the analysis of all-or-none acute toxicity bioassay data. Input: Number of concentrations, tabular text statistics (F, "t," Chi-square), number of organisms tested and number dead in each concentration and control. In general, mortality must be related to concentration. A minimum of three concentrations, with a partial kill both above and below 50% is required. Output: LC30, 50, 70, 90 values with upper and lower 95% confidence limits; intercept, slope and standard error of regression line, and several additional measures of goodness. "Probit Analysis," by D.J. Finney, Cambridge University Press, 1971. Program written by A.L. Jensen, School of Natural Resources, University of Michigan, Ann Arbor, Michigan 48104.

Patrick W. Borthwick Gulf Breeze Environmental Research Laboratory Environmental Protection Agency Sabine Island, Gulf Breeze, FL 32561

Copy on file at NODC (listing, documentation)

Telephone (904) 932-5326

Species Affinities REGROUP

Language - FORTRAN Hardware - CDC 3600

The program first determines the numbers of occurrences and joint occurrences of the species in the set of samples; it then calculates an index of affinity for each pair of species. The species are ordered in terms of the numbers of affinities they have, and this list is printed along with a list of names, code numbers, and numbers of occurrences. The program then determines the largest group that could be formed, tests to see whether that many species all have affinity with each other and, if they do, prints out the group. If they do not, it tries the next smaller group, etc. Those species which had affinity only with this group - and/or earlier groups -- are listed. The remaining species are reordered and the process continues until all species have been put either in groups or in the list of species with affinities with groups. Limits -- 200 species. Author - E.W. Fager.

Scripps Institution of Oceanography Copy on file at NODC (listing, documentation) P.O. Box 1529
La Jolla, CA 92037

Productivity OXYGEN

Language - FORTRAN IV Hardware - CDC 6600

Determines productivity by oxygen diurnal curve method. Input includes oxygen concentration and oxygen probe parameters. Output contains net and gross productivity and P/R plus original data. Author - William Longley.

Marine Science Institute The University of Texas Port Aransas, TX 78373 Copy on file at NODC (listing, documentation)

Species Diversity

Language - FORTRAN IV Hardware - CDC 6600/50 K 60 bit words

Calculates species diversity index for numbers of organisms and/or weight of organisms, utilizing the diversity index equation derived from Margalef. The program calls subroutine SEASON, which calculates seasonal averages for a given station, seasonal limits being indicated by a control card. This subroutine outputs mean, standard deviation, and range of diversity indices for each seasonal group. Other desired groupings may be entered by a groupings control card. Author - A.D. Eaton.

Marine Science Institute The University of Texas Port Aransas, TX 78373 Copy on file at NODC (listing, documentation)

Productivity ECOPROD Language - FORTRAN IV Hardware - CDC 6600/25 K 60 bit words

Computes gross and net productivity, respiration, P/R ratio, photosynthetic quotient, efficiency, and diffusion coefficient, given sunlight data and diurnal measures of oxygen and/or carbon dioxide. Author - William Longley.

Marine Science Institute The University of Texas Port Aransas, TX 78373 Copy on file at NODC (listing, documentation)

Concentrations per Square Meter of Surface

Language - FORTRAN IV Hardware - IBM 7074-II/7040 DCS/2231 words

Computes various chemical and biological compound concentrations as well as productivity rates per square meter of water surface from integrated values on per volume basis. Ten concentrations and rates are integrated over up to seven pairs of optional depth limits. Report UWMS-1006, June 1966. Source deck has 771 cards. Authors - Leilonie D. Gillespie and Linda S. Green.

Department of Oceanography University of Washington Seattle, WA 98105 Copy on file at NODC (above report)

Combined Chlorophyll and Productivity

Language - FORTRAN IV Hardware - CDC 6400

Computes assimilation of productivity in seawater; also computes the quantities of chlorophyll A, B, and C, and the amount of carotenoids in seawater. The chlorophyll program determines the amount of plankton pigments using the equations of Richards and Thompson. The productivity program (Carbon 14) determines the production of marine phytoplankton by using Neilsen's method. Output consists of both printed matter and of library cards; the cards may be used as input to a multiple regression program to derive a relation between productivity and chlorophyll A; a plot routine may be called to graph one or several variables as a function of depth, or to display the horizontal distribution of any given property. Written by Marsha Wallin, Nov. 1963, based on two programs prepared in 1962 for the IBM 709 by M.R. Rona; revised in 1969 for the CDC 6400.

Department of Oceanography University of Washington Seattle, WA 98105 Copy on file at NODC (listing, documentation)

Phytoplankton Numbers, Volumes and Surface Areas by Species

Language - FORTRAN IV and MAP

Hardware - IBM 7094-II/7040 DCS/23,836 words

Two programs, differing only in input format, compute concentrations of cell numbers, cell surface areas, and cell and plasma volumes in marine phytoplankton populations, with option to compute mean cell areas, mean cell volumes, and mean plasma volumes, as well as the ratios: cell area to cell volume and cell area to plasma volume. The input quantities are obtained from microscopic examination of seawater samples. A subroutine computes the area, volume, and plasma volume of a cell from measured dimensions of diverse species. Source deck has 1221 cards. Special Report No. 38, M66-41, July 1966, by Paavo E. Kovala and Jerry D. Larrance.

Department of Oceanography University of Washington Seattle, WA 98105 Copy on file at NODC (above report)

Program to Generate a Taxonomic Directory of Deep-Ocean Zooplankton

Language - FORTRAN IV Hardware - UNIVAC 1108/20K words

Generates a data file (taxonomic directory) which classifies and catalogs various species of deep-ocean zooplankton collected in water samples for the purpose of studying the population and distribution statistics of these species. Input: Cards containing either the phylum, class, order, genus, or species name and the appropriate identifying numbers associated with each of these categories. NUSC Technical Memorandum No. TL-104-71, May 1971.

Drew Drinkard Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771, ext. 2127

Deep-Ocean Zooplankton Distribution

Language - FORTRAN IV Hardware - UNIVAC 1108/30K words

The purpose of the program is to study the distribution statistics of the deep-ocean zooplankton species within a particular taxonomic category. The distribution characteristics of the
individual species are examined for both the individual net samples which have been collected
at various sampling depths and the combined net samples for a given tow. Input: Station data,
sample data, species abundance data on cards, and a hash table species directory (program
available for generating such a hash table). Records total count for each species to which the
various organisms collected in the samples belong. For the individual net samples, computes
the percentage of the total taxonomic category which each species in the sample represents.
For the combined net samples, both the percentage of the total taxonomic category and the percentage of the entire sample (all taxa included) are computed. Finally, the population density of each species within its taxonomic category is calculated. NUSC Technical Memorandum
No. TL-107-71, May 1971.

Drew Drinkard Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771, ext. 2127

Deep-Ocean Zooplankton Population Statistics

Language - FORTRAN IV Hardware - UNIVAC 1108/30K

Produces population statistics for both the individual net samples collected at various depths and for the combined net samples. Input: Station data, sample data, species abundance data on cards, and a taxonomic directory on mass storage device. Each species is identified by phylum and class with the aid of the taxonomic directory. The organisms are counted according to the phylum or class. Total counts for the entire sample are calculated for each category. The population densities of each category are computed. Also calculated is the percentage of the total sample that each taxonomic category represents. NUSC Technical Memorandum No. TL-106-71, May 1971.

Drew Drinkard Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771, ext. 2127

PIGMENT RATIO

Language - FORTRAN IV

Hardware - IBM 360/less than 5000 bytes

Computes ratios: Chl a/Carot, Pheo/Carot, (Chl a + Pheo)/Carot, Chl b/Carot, Chl c/Carot, and Fluor/(Chl a + Pheo). Input: Sample identification, chlorophylls a, b, c, carotenoids, pheopigments, and fluorescence on cards. Output: Printed sample identification and ratios. "A Computer Program Package for Aquatic Ecologists," by Paul J. Godfrey, Lois White, and Elizabeth Keokosky.

Paul J. Godfrey Department of Natural Resources Cornell University, Fernow Hall Ithaca, NY 14850 Copy on file at NODC (listing, documentation)

Telephone (607) 256-3120

SUCCESSION

Language - FORTRAN IV

Hardware - IBM 360/4440 bytes

Computes succession rate of community based on measure proposed by Jassby and Goldman of relative change in each species' blomass. See "A Quantitative Measure of Succession Rate and Its Application to the Phytoplankton of Lakes," by A.D. Jassby and C.R. Goldman, 1974, Amer. Naturalist 108:688-693. Input: Integrated species blomasses and sampling date in calendar days. Output: Printed sample identification values, dates defining interval in each succession rate, and succession rate. "A Computer Program Package for Aquatic Ecologists," by Paul J. Godfrey, Lois White, and Elizabeth Keokosky.

Paul J. Godfrey Department of Natural Resources Cornell University, Fernow Hall Ithaca, NY 14850

Copy on file at NODC (listing, documentation)

Telephone (607) 256-3120

Species Abundance SPECIES

Language - PL/1

Hardware - IBM 360/250K

This series of three programs was developed to accept species abundance data in its simplest form, check it for errors, produce lists of species abundances where comparisons may be made between days, depths, lakes, stations or years, and convert the input data to a form acceptable to packaged programs. Output: Listings of species abundances, summary data including total abundance, number of species and diversity, and subtotals within user-determined groups, punched output of summary data. "A Computer Program Package for Aquatic Ecologists," by Paul J. Godfrey, Lois White, and Elizabeth Keokosky.

Paul J. Godfrey Department of Natural Resources Cornell University, Fernow Hall Ithaca, NY 14850 Copy on file at NODC (listing, documentation)

Telephone (607) 256-3120

Yield Per Recruit RYLD, BIOM Language - FORTRAN IV Hardware - IBM 1130

Computes the approximate yield of a fish stock per recruitment by either of two methods (arithmetic or exponential approximations), or simply computes the stock biomass when there is no fishing. Output: An equilibrium yield matrix with up to 400 entries corresponding to 20 ages at entry and 20 multipliers. Technical Report No. 92 (unpublished manuscript), No. 1968.

Authors - L.V. Pienaar and J.A. Thomson. Earlier version written by L.E. Gales, College of Fisheries, University of Washington.

Fisheries Research Board of Canada Copy on file at NODC (above report) Biological Station Nanaimo, B.C.

Chlorophy11 CHLOR Language - FORTRAN Hardware - IBM 370

Calculates chlorophyll in mg/m^3 according to B&P extraction, spectrophotometric technique. Input: Raw absorbences. Author - Stephen A. Macko.

B.J. McAlice Available from originator only Ira C. Darling Center (Marine Laboratory)
University of Maine at Orono
Walpole, ME 04573 Telephone (207) 563-3146

Phytoplankton Population Density

Language - WATFIV FORTRAN Hardware - IBM 370

Computes species densities and population percentages and relative diversity from cell counts. Output formatted according to taxonomy in FAO Fisheries Technical Paper #12. Author - Stephen A. Macko.

B.J. McAlice Available from originator only Ira C. Darling Center (Marine Laboratory)
University of Maine at Orono
Walpole, ME 04573 Telephone (207) 563-3146

Species Diversity DVRSTY

Language - WATFIV FORTRAN Hardware - IBM 370

From unformatted raw data, produces species diversity, and diversity matrix.

B.J. McAlice Available from originator only Ira C. Darling Center (Marine Laboratory)
University of Maine at Orono
Walpole, ME 04573 Telephone (207) 563-3146

FISHERIES

Length Frequency Analysis LENFRE

Language - FORTRAN

Hardware - Burroughs 6500

Uses three methods of stratification to expand sample length frequencies in different strata. The program was developed for tuna fishery samples. Input: Sample length frequencies for up to 80 strata, alpha and beta for the length-weight relation, von Bertalanffy growth parameters. Output: Tables of sample length frequencies, expanded length frequencies (expanded by total catch), weight in each length interval, by strata; total frequencies for all strata combined; average length and weights and age; catch per unit effort.

Atilio L. Coan, Jr. Available from originator only Southwest Fisheries Center
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 285

Yield per Recruit for Multi-Gear Fisheries

Language - FORTRAN

Hardware - Burroughs 6500/6,200 words

Computes estimates of yield per recruit and several related parameters for fisheries that are exploited by several gears which may have differing vectors of age specific fishing mortality. The Ricker yield equation is used. Input is limited to 4 types of gear, 30 age intervals, and 10 levels of fishing mortality. Output: Besides tables of yield per recruit, landings per recruit when fish below minimum size are caught and then discarded dead, average weight of fish in catch, and yield per recruit per effort as functions of minimum size and amount of fishing effort are provided for each gear and for the entire fishery. The program has been used for evaluating proposed minimum size regulations for the yellowfin tuna fishery of the tropical Atlantic, a fishery exploited by four types of vessels (bait boats, small purse seiners, large purse seiners, and longliners) having quite different vectors of age specific fishing mortality.

William H. Lenarz Available from originator only
Southwest Fisheries Center
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 280

Resources Allocation in Fisheries Management PISCES

Language - FORTRAN IV Hardware - IBM 370/125K

Uses a Monte Carlo simulation to predict the effect of fisheries management programs upon the distribution and abundance of angler consumption. Input: State fisheries agency data and management plan. Output: (1) Predictions of the number and location of angler-days throughout a state; (2) Standard deviations. "PISCES: A Computer Simulator to Aid Planning in State Fisheries Management Agencies," by R.D. Clark, MS Thesis, VPI&SU.

Robert T. Lackey
Department of Fisheries and
Wildlife Sciences
Virginia Polytechnic Institute
and State University
Blacksburg, VA 24061

Available from originator only

Telephone (703) 951-6944

Computer-Implemented Water Resources Teaching Game, DAM Language - FORTRAN IV
Hardware - IBM 370/120K/Interactive terminal
desirable

Using a simulation of an existing reservoir system, this computer-assisted instructional game illustrates the management of a large multiple-use reservoir system. Input: Student management decisions for (1) a regional planning commissioner, (2) a fisheries manager, (3) a power company executive, (4) a recreation specialist, and (5) a city mayor. Output: Status of reservoir system, including human components.

Robert T. Lackey
Department of Fisheries and
Wildlife Sciences
Virginia Polytechnic Institute
and State University
Blacksburg, VA 24061

Available from originator only

Telephone (703) 951-6944

A Generalized Exploited Population Simulator GXPOPS

Language - FORTRAN
Hardware - Burroughs 6500/CDC 3600

GXPOPS is a generalized exploited population simulator designed for use on a wide variety of aquatic life history patterns. Population processes programed into the present version are (1) month-specific and density-independent mortality rates on the recruited population, (2) density-independent growth, (3) sex-specific and age-specific, but density-independent, maturation, (4) reproductive success due to random mating, and (5) density-dependent or density-independent recruitment. Mortality, growth, and maturation can be made density-dependent through the addition of subroutines. The unit length of time is the reproductive cycle, commonly a year in temperate species; computations are performed each one-twelfth of a unit, thereby representing a month for most species.

There are three output options. For each year the complete output option lists monthly (1) the average year class size, yield in numbers and weight for any six consecutive year classes, (2) the total initial population size, (3) the average total fishable population, (4) the total yield in numbers and weight, and (5) the average sex ratio. Annual summaries of initial population, average population, average fishable population, yield in number and weight, and the spawning success are provided by year class for the total population and for the fishable total population. The moderate option lists only the monthly summary totals and the annual summary by year class. The minimum option, suited for long simulations, lists only the annual summary by year class and for the total and fishable total population. GXPOPS is dimensioned to handle the computations for up to 30 year classes, but, in order to economize on space, the output is dimensioned to list up to 6 consecutive year classes only. The FORMAT statements must be rewritten to list an additional number of year classes. "A general life history exploited population simulator with pandalid shrimp as an example," by William W. Fox, Jr., Fishery Bulletin, U.S., 71 (4): 1019-1028, 1973.

William W. Fox, Jr. Available from originator only Southwest Fisheries Center
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 345

Generalized Stock Production Model PRODFIT

Language - FORTRAN
Hardware - CDC 3600/Burroughs 6500

Input: (Option 1) A catch and fishing effort history and a vector of significant year class numbers are read in; the catch per unit effort is computed internally and the averaged fishing effort vector is computed with subroutine AVEFF; (Option 2) The vectors of catch per unit effort and averaged (or equilibrium) fishing effort are read in directly. Output includes a listing of the input data, the transformed data, initial parameter estimates, the iterative solution steps, the management implications of the final model *U max, U opt, f opt, and Y max and their variability indices, the observed and predicted values and error terms, estimates of the catchability coefficient, and a table of equilibrium values. (*U max is the relative density of the population before exploitation; U opt is the relative population density providing the maximum sustainable yield; and Y max is the maximum sustainable yield.) "Fitting the generalized stock production

model by least-squares and equilibrium approximation," by William W. Fox, Jr, Fishery Bulletin, U.S., in press.

William W. Fox, Jr. Available from originator only Southwest Fisheries Center
National Marine Fisheries Service, NOAA

P.O. Box 271

La Jolla, CA 92037 Telephone (714) 453-2820, ext. 345

Normal Distribution Separator Language - FORTRAN
TCPAL Hardware - Burroughs 6700

Separates a length-frequency sampling distribution into K component normal distributions. Used to estimate age group relative abundance in length samples of unageable species. The method is statistically superior to graphical procedures. Also, the program will produce estimates of the percent composition by age group and the number of fish in the sample from each age group. Output includes a plotted histogram, the observed frequencies, and all estimated values. The value of K may be from one to ten. "Estimation of parameters for a mixture of normal distributions," by V. Hasselblad, Technometrics 8(3):431-441, 1966. Author - Victor Hasselblad; modified by Patrick K. Tomlinson.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Spawner-Recruit Curve Fitting TCPA2

Language - FORTRAN Hardware - Burroughs 6700

Estimates the parameters of the Ricker spawner-recruit curve, $R = ASe^{-DS}$, from fitting the logarithmic transformation Ln(R/S) = LnA-bs, by the method of least squares. S is the spawning bio-mass, R is the recruit biomass, and A and b are constants. From the fitted curve a table of spawning stocks and resultant recruitments is produced. The curve is discussed in "Handbook of computations for biological statistics of fish populations," by W.E. Ricker, Bull. Fish.Res.Bd. Canada (119):1-300, 1958. Author - Patrick K. Tomlin.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Weight-Length Curve Fitting TCPA3

Language - FORTRAN
Hardware - Burroughs 6700

Fits a curve giving weight as a function of length of the form $W = a L^b$ where W is the weight and L is length. It produces a table of fitted weights and lengths and provides various related statistics. The method of fitting involved linearization by common logarithms and the usual least-squares procedure for fitting a straight line. Author - Norman J. Abramson; modified by Patrick K. Tomlinson and Catherine L. Berude.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Age Composition Estimation TCPB1

Language - FORTRAN Hardware - Burroughs 6700

Estimates ages composition using a double sampling scheme with length as strata. Also provides estimates assuming simple random sampling of aged fish. Under the double sampling scheme, the first sample is of lengths (length frequency) to estimate length-strata sizes; the second or main sample is for ages. The second sample can be drawn (1) independently, (2) as a subsample of the first, or (3) as a subsample within length strata. "A method of sampling the Pacific albacore (Thunnus germo) catch for relative age composition," by D.J. Mackett, Proc.World.Sci. Meet.Biol.Tunas & Rel.Sp., FAO Fish.Rpt. No. 6, Vol. 3, 1963. Author - D.J. Mackett.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Best Current Estimate of Numbers, Percentages, Language - FORTRAN and Weights of Fish Caught, TCPB2 Hardware - Burroughs 6700

Given any number of length detail cards for fish sampled during a given bimonthly (or other) period, this program calculates by primary area and gear: (1) The number of fish sampled at each length-frequency interval; (2) the percentage of fish sampled at each length-frequency interval; (3) the smoothed percentage of fish sampled at each length-frequency interval; (4) the average weight of the fish. With the input of the corresponding catch data the program makes estimates of the number of fish caught at each length-frequency interval for the given period by primary area and gear. The program also makes estimates for the given period for both gears combined for each of the primary and secondary areas of (1) through (4) above. It estimates the same thing for each gear separately and for each of the secondary areas. Finally the program makes estimates for the given period and all preceding periods of that year combined for each gear separately and both gears combined for each of the primary and secondary areas of (1) through (4) above and the total weight of fish caught at each length-frequency interval. Limitations: (a) The cards for each period must be kept separately, and the periods must be in chronological order; (b) gear 2 must follow gear 1 in the catch cards; (c) although any number of periods may be run consecutively, it must be kept in mind that all of the periods will be summed to compute the best current estimate; (d) the maximum number of length frequencies is 80, gears 2, and primary areas 7. Author - Christopher T. Psaropulos.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Length-Frequency Distribution of Market Language - FORTRAN
Measurement Sampling, TCPB3 Hardware - Burroughs 6700

Given any number of length detail cards for fish sampled with input of corresponding catch data during a year period, this program (using the same methods as TCPB2) summarizes, by quarter, market measurement area code, and for each gear, or combined: (1) The average weight, and the number of fish caught at each quarter; (2) the raw and smoothed percentage of fish sampled and caught at each length-frequency interval; (3) the number of fish sampled and caught at each length-frequency interval. Author - Christopher T. Psaropulos.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Von Bertalanffy Growth Curve Fitting TCPC1

Language - FORTRAN Hardware - Burroughs 6700

Fits the von Bertalanffy growth-in-length curve to unequally spaced age groups with unequal sample sizes for separate ages. It fits the equation D_t = length (at age t) = A+BR^t; 0<R<F1 (1) by least squares when data of the form (length, age) are given in pairs (L_t, t) . The program minimizes the function $Q = \frac{n}{\Sigma}(L_t - A - BR^t)^2$ by use of the partial derivatives evaluated near zero.

Output is in the von Bertalanffy form, where $A = L_{\infty}$, $R = e^{-k}$ or $K = -\log_e R$, $B = -L_{\infty} L^{kto}$ or $t_0 = [\log_e (-B) - \log_e A]/K$.

The output gives values of the expected length at age using equation (1) evaluated at ages selected by the user. The pairs (L_t, t) may be read into the program in two different ways. The first assumes that no type of ordering or sorting has occurred and that each (L_t, t) represents a single fish. The second method allows for frequency distributions and the user provides a triple (L_t, t, m) where m is the number of times (or some weighting factor) the pair (L_t, t) is to be used. Author - Patrick K. Tomlinson.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Von Bertalanffy Growth Curve for Unequal Age Intervals

Language - FORTRAN
Hardware - Burroughs 6700

Age Intervals Hardware - Burroughs 6700 TCPC2

Uses the method of Tomlinson and Abramson to fit length at age data to the von Bertalanffy growth equation $L_t = L_{\infty} \ (1 - e^{-k(t-t_0)})$ where $L_t =$ length at time t, $L_{\infty} =$ asymptotic length, K = growth constant, and $t_0 =$ theoretical time at which $L_t = 0$. The age intervals do not need to be equal. Limitations: The number of lengths for each age group must be at least two and not more than 500. (If only one length, or a single mean length, is available for a given age group, it may be punched twice.) The maximum number of age groups is 40. The output includes: (1) estimates of L_{∞} , K, and t_0 from each iteration of the fitting process; (2) final estimates of L_{∞} , K, and t_0 ; (3) standard errors of L_{∞} , K, and t_0 ; (4) fitted lengths for age 0 through the maximum included in the input; (5) mean lengths of the samples at each age group; (6) standard errors of the mean lengths in the samples; (7) the number of lengths in each age group; (8) variance—covariance matrix; (9) standard error of estimate. "Computer programs for fisheries problems," by Norman J. Abramson, Trans.Amer.Fish.Soc. 92(3):310, 1963. Fitting a von Bertalanffy growth curve by least squares including tables of polynomials," by Patrick K. Tomlinson and Norman J. Abramson, Fish.Bull.Calif.Dept.Fish & Game 116:69 p., 1961. Author - N.J. Abramson. (See also TCPC 3)

Christopher T. Psaropulos Available from originator only Inter-American Tropical Tuna Commission

Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Von Bertalanffy Growth Curve for Equal Age Intervals TCPC3

Language - FORTRAN Hardware - Burroughs 6700

Similar to TCPC2. However, the age intervals must be equal with at least two observed lengths at each age. The program always yields estimates when a least-squares solution exists, and immediately terminates the run when there is no solution. In this respect it is superior to TCPC2, which occasionally does not converge to estimates even when a solution exists. Author - N.J. Abramson.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Von Bertalanffy Growth Curve Fitting TCPC4

Language - FORTRAN

Hardware - Burroughs 6700

Estimates the parameters K and L_{∞} of the von Bertalanffy growth-in-length curve when only the lengths of individual fish at two points in time are known. This allows the curve to be fitted to tag release and recovery data. Fits equation (1) by least squares when data are of the form (initial length, final length, time elapsed).

$$L_t + A_t = L_t R^{\Delta t} + A(1-R^{\Delta t}); 0 < R < 1$$
 (1)

 L_t is the initial length; $L_t+_{\Delta t}$ is the final length, and Δt is the time elapsed. Given n triples (L_t , $L_t+_{\Delta t}$, Δt) and equation (1), the program minimizes the function.

Q =
n
 [L_t+ $_{\Delta_t}$ - L_t R $^{\Delta t}$ - A (1-R $^{\Delta t}$)] 2 by use of the partial derivations evaluated

near zero. Output is in the von Bertalanffy form, where L=A and $K=\log_e R$. The output gives values of the expected length using equation (1) evaluated at an initial length and time lapse selected by the user. The user enters one initial length and a time lapse. The program computes the final lengths. The triples are punched on cards, with one triple per card. No provisions are made for frequency distributions or weighting factors. The program will handle up to 5,000 triples. Author - Patrick K. Tomlinson.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Estimation of Linear Growth and von Language - FORTRAN
Bertalanffy Growth Equation from Tag Data Hardware - Burroughs 6700

This program is used to estimate the rate of linear growth per unit time and the parameters L_{∞} and K of the von Bertalanffy growth equation from data on the lengths at release and at recapture, and the times at liberty for two or more tagged fish. Known bias(es) in the lengths at release for fish of one or two groups can be corrected by use of the constants a and b in the equation y = a + bx, where x is the uncorrected length and y is the corrected length. Before estimating L_{∞} and K by the method of program TCPC4, the program calculates the mean rate of linear growth per time interval and its standard deviation. If option 1 is specified, the data for any fish which grew at rates which differ by three or more standard deviations from the mean rate are eliminated; if option 2 is specified, no data are eliminated. Author - Patrick K. Tomlinson; modified by Jo Anne Levatin.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Fishing Power Estimation Language - FORTRAN TCPD1 Language - Burroughs 6700

Estimates the fishing power of individual vessels or class relative to a standard vessel or

class and the densities of fish by time-area strata relative to a standard time-area stratum. Program first estimates log fishing powers, using the method described by Robson (1966). Then the estimates are converted from log relative fishing power and log density to the original scales, employing a bias-correcting factor given in Laurent (1963). The program handles up to 2000 catch observations from a combined total of not more than 200 distinct boats and time-area strata; it arbitrarily selects the lowest numbered boat as the standard vessel and the lowest numbered area-data in which the standard vessel fished as the standard time-area strata. "Log-normal distribution and the translation method: description and estimation problems" by Andre G. Laurent, Jour.Amer.Stat.Assn. 58(301):231-235, 1963. "Estimation of the relative fishing power of individual ships," by D.S. Robson, Res.Bull.Inter.Comm.NW.Atlantic.Fish. (3):5-14, 1966. Author - Catherine L. Berude.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Survival Rate Estimation TCPE1

Language - FORTRAN
Hardware - Burroughs 6700

Estimates a survival rate from the age composition of a sample. Computes a number of statistical measures associated with a vector of catch number N_0 , N_1 , ..., N_I where N_j = number of fish caught of (coded) age "j." Four options are available:

Option 1 assumes that (a) recruitment and annual survival are constant for all age groups entered in catch vector; (b) all ages in catch vector are fully available to sampling gear; (c) ages are known for all fish in catch vector. Computes estimate of survival rate, variance of survival rate, standard error of survival rate, 95% confidence interval for survival rate, instantaneous mortality rate, variance of instantaneous mortality rate, standard error of Z (total mortality), 95% confidence interval for Z, and Z interval obtained from S interval.

Option 2 tests the hypothesis that the relative frequency in the O-age group as compared to the older ages does not deviate significantly from the expected frequency under option 1 assumptions and computes a chi-square statistic associated with the difference between the best estimate and Heinke's estimate. If this statistic exceeds CHI (a chi-square value for desired confidence level) the catch numbers are recorded as follows: $N_1--->N_0$; $N_2--->N_1$; $N_3--->N_2$;...; $N_1--->N_{1-1}$ and the above computations are made for the new vector $N_0,\ldots N_{1-1}$. This test is repeated until the statistics are less than CHI, a theoretical chi-square value with one degree of freedom which specifies the significance level of the test. CHI is entered on a control card. If the statistic is less than CHI, the output is the same as in option 1.

Option 3 is to be used when assumptions (a) and (b) of option 1 hold but it is not possible to age fish whose coded age is greater than "K." Option 3 assumes that the recorded relative frequencies are not reliable for fish of ages K+1, K+2,...,I in the vector of catch numbers; it sums the catch for ages K+1 to I and computes the same output as in option 1 using the catch vector N_0 , N_1 ,..., N_K , m where m= $N_{K+1}+...+N_1$.

Option 4 permits the user to subdivide the catch curve into a number of segments. The assumptions listed under option 1 may be satisfied for the consecutive age groups in one segment but not for age groups in different segments of a catch curve. Because segmentation of a catch curve may be exploratory, the program allows the use of overlapping segments, i.e., one age group may appear in more than one segment. Option 4 computes the same output as option 1.

"The analysis of a catch curve," by D.C. Chapman and D.S. Robson, Biometrics 16:354-368, 1960. "Catch curves and mortality rates," by D.S. Robson and D.G. Chapman, Trans.Am.Fish. Soc. 90:1810189, 1961. Author - Lawrence E. Gales.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Fishing Mortalities Estimation TCPE2

Language - FORTRAN Hardware - Burroughs 6700

Uses the method of Murphy (1965) and Tomlinson (1970) to estimate the population (P) of a cohort of fish at the beginning of each of several consecutive time intervals (i) and the coefficients of catchability (q) and of fishing mortality (F) for each interval when the catches (C), effort (f), and the coefficients of natural mortality (M) for each interval and F for either the first or last interval are known. When estimates of F and M are not available, various trial values can be used to obtain estimates which appear to be reasonable. "A solution of the catch equation, "by G.I. Murphy, J.Fish.Res.Bd.Can. 22(1):191-202, 1965. "A generalization of the Murphy catch equation," by P.K. Tomlinson, J.Fish.Res.Bd.Can. 27(4): 821-825, 1970. Author - Patrick K. Tomlinson; modified by Jo Anne Levatin.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Relative Yield per Recruit at Various Fishing Intensities TCPF1 Language - FORTRAN Hardware - Burroughs 6700

Calculates the relative yield in weight per recruit at various fishing intensities by the method of Beverton (1963: Formula 1)). With option 1, the program calculates the ratios of the yields per recruit at selected values of E = (F/(F+M)) to the yield per recruit at E = 1. M is the coefficient of natural mortality; F is the coefficient of fishing mortality. With option 2, it calculates the relative yield per recruit at selected levels of F. Limitations: No more than ten values of M, nor more than 1000 values of E or F, can be used for a single problem; in option 1, M cannot equal 0. "Maturation, growth and mortality of clupeid and engraulid stocks in relation to fishing," by R.J.H. Beverton, Rapp.Proc.-Verb. 154:44-67, 1963. Author-Christopher T. Psaropulos.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Yield Curves with Constant Rates TCPF2

Language - FORTRAN Hardware - Burroughs 6700

Using the incomplete beta-function, evaluates the Beverton and Holt yield equation and produces an array of coordinates for plotting yield isopleths. "Allometric growth and the Beverton and Holt yield equation." by G.J. Paulik and L.E. Gales, Amer.Fish.Soc., Trans. 93(4):369-381, 1964. Author - Lawrence E. Gales.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Eumetric Yield TCPF3

Language - FORTRAN Hardware - Burroughs 6700

Uses Beverton and Holt's (1957: 36:4.4) equation to compute the population in numbers, the biomass, the yield in numbers, and the yield in weight theoretically obtainable from one recruit with various combinations of growth, mortality, and age of entry into the fishery. "On the

dynamics of exploited fish populations," by R.J.H. Beverton and S.J. Holt, Fish.Inves., Minis. Agr.Fish.Food, Ser.2, 19:533 p., 1957. Author - Lawrence E. Gales; modified by Christopher T. Psaropulos.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Piecewise Integration of Yield Curves TCPF4

Language - FORTRAN Hardware - Burroughs 6700

Hardware - Burroughs 6700

Computes an approximate yield isopleth for a given number of recruits to a fishery when both growth and natural mortality are estimated empirically. The calculations are carried out using a modified form of Ricker's method for estimating equilibrium yield. The program is extremely general in that growth, natural mortality and fishing mortality rates need not be measured using the same time intervals. Fishing mortality rates can be age specific (up to 400 different rates can be applied during the life of the fish) but the over-all level of fishing mortality can be varied by means of multipliers which apply to all of the individual age specific rates. The range and the intervals between ages at first capture can also be varied by the user.

The program has two approximation options: (1) an exponential mode which assumes that the biomass of the stock changes in a strictly exponential manner during any interval when growth, natural mortality, and fishing rates are all constant (Ricker, 1958: Equation 10.4); (2) an arithmetic mode which uses the arithmetic mean of the stock biomass at the start and at the end of any interval during which all three rates are constant as an estimate of the average biomass present during the interval (Ricker, 1958: Equation 10.3).

The program will compute and print out at specified times the biomass of the stock when only natural mortality and growth are present. This biomass vector is useful for determining the optimum harvest times for stocks that may be completely harvested at one time. "A generalized computer program for the Ricker model of equilibrium yield per recruitment," by G.J. Paulik and W.F. Bayliff, J.Fish.Res.Bd.Canada 24:249-252, 1967. "Handbook of computations for biological statistics of fish populations," by W.E. Ricker, Fish.Res.Bd.Canada Bull. (119):300 pp. Author - Lawrence E. Gales.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Piecewise Integration of Yield Curves When Language - FORTRAN

Age is Unknown TCPF5

Performs piecewise integration of yield curves when age is unknown. Different mortality rates may be associated with intervals in the lifespan and growth is calculated as a function of length from a transformed von Bertalanffy growth curve. Yield isopleths are given as functions of length-at-entry and fishing mortality. Note that program TCPC4 provides von Bertalanffy growth parameters from unaged fish which can be used with this program. The amount of growth a fish will put on during an interval of time is a function of the size at the beginning of the interval, not age. Similarly, survival is usually given as a function of time elapsed, not age. Therefore, growth during an interval and survival during the interval can be combined to produce yield, even though age is unknown. Author - Patrick K. Tomlinson.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Constants in Schaefer's Model

Language - FORTRAN Hardware - Burroughs 6700

Uses three simultaneous equations to solve for the constants, a, M, and k_2 , in Schaefer's (1957) model for determining the status of a stock of fish in regard to fishing. Schaefer (1957) used an iterative procedure to evaluate these constants, but in another publication (Schaefer and Beverton, 1963), it was indicated that evaluation of the constants by the solution of three simultaneous equations would be acceptable. "A study of the dynamics of the fishery for yellow-fin tuna in the eastern tropical Pacific Ocean" by M.B. Schaefer, Bull., Inter-Amer.Trop.Tuna Comm. 2(6):245-285, 1957. "Fishery dynamics - their analysis and interpretation," by M.B. Schaefer and R.J.H. Beverton, pp. 464-483 in, M.N. Hill, The Sea, Vol. 2, Interscience Publishers, New York, 1963. Author - Christopher T. Psaropulos.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Schaefer Logistics Model of Fish Production TCPF7

Language - FORTRAN Hardware - Burroughs 6700

Pella and Tomlinson (1969) discussed a generalization of Schaefer's (1954) logistic model to explain changes in catch as related to effort upon a given population and they presented a computer program useful in estimating the parameters of the model when observed catch-effort data are available. However, in their scheme, it is necessary to use numerical methods for approximating the expected catch. Also, the user is required to provide guesses of the parameters and limits to control searching. In general, this program TCPF7 uses the same procedure for estimating the parameters as that described in Pella and Tomlinson. Exceptions: The user only needs to supply catch, observed effort, and elapsed time for each of n time intervals; the program will make the guesses and set the values used in the search. "A generalized stock production model," by J.J. Pella and P.K. Tomlinson, Inter-Amer.Trop.Tuna Comm., Bull. 13(3):421-496, 1969. "Some aspects of the dynamics of populations important to the management of the commercial marine fisheries," by M.B. Schaefer, Inter-Amer.Trop.Tuna Comm., Bull. 1(2):25-56. Author - Patrick K. Tomlinson.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Fits Generalized Stock Production Model Language - FORTRAN
TCPF8 Hardware - Burroughs 6700

Fits the generalized stock production model described by Pella and Tomlinson (1969) to catch and effort data. This model estimates equilibrium yield as a function of effort or population size. The production curve is allowed to be skewed. "A generalized stock production model," by Jerome J. Pella and Patrick K. Tomlinson, Inter-Amer.Trop.Tuna Comm., Bull. 13(3):419-496. Authors - Pella and Tomlinson; modified by Catherine L. Berude.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Biometry - Linear Regression Analysis Language - FORTRAN TCSA1 Hardware - Burroughs 6700

1

Performs an analysis of regression with one or more Y-values corresponding to each X-value. The Model I Regression is based on the following assumptions: (a) that the independent variable X is measured without error, where the X's are "fixed"; (b) that the expected value for the variable Y for any given value X is described by the linear function $\mu_Y = \alpha + \beta X$; (c) that for any given value of X the Y's are independently and normally distributed. Y = $\alpha + \beta X + \epsilon$, where ϵ is assumed to be normally distributed error term with a mean of zero; (d) that the samples along the regression line have a common variance, σ^2 , constant and independent of the magnitude of X or Y. In Model II Regression, the independent variable and the dependent variable are both subject to error. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter O.

> Christopher T. Psaropulos Available from originator only Inter-American Tropical Tuna Commission Southwest Fisheries Center Post Office Box 271 La Jolla, CA 92037

Telephone (714) 453-2820, ext. 310 or 253

Generalized Weighted Linear Regression for Two Variables, TCSA2

Language - FORTRAN

Hardware - Burroughs 6700

Computes the regression line $Y_i = b_0 + b_i x_i$ where the Y_i may have different weights. The user may transform the data by any of three transformations, natural logarithms of X, Y, and/or W (weight), common logarithms of X, Y, and/or W, and/or powers of X, Y, and/or W. The two variables and the weights may be transformed independently. The program normalizes the weights (or the transformations of the weights) by dividing each weight by the mean weight. Produces printer plots of the data and deviations. Author - Lawrence E. Gales; modified by Patrick E. Tomlinson and Christopher T. Psaropulos.

> Christopher T. Psaropulos Available from originator only Inter-American Tropical Tuna Commission Southwest Fisheries Center Post Office Box 271 La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Linear Regression, Both Variables Subject Language - FORTRAN to Error, TCSA3 Hardware - Burroughs 6700

Computes a regression in which both the dependent and the independent variable are subject to error. There are several methods for obtaining solution to the equation in a Model II case, depending upon one's knowledge of the error variances or their ratios. Since this situation is not too likely to arise in the biological sciences, the authors adapted a relatively simple approach in which no knowledge of these variances is assumed -- the Bartlett's three-group method. This method does not yield a conventional least squares regression line and consequently special techniques must be used for significance testing (Sokal and Rohlf, 1969). The user may transform the data by any of three transformations: natural logarithms of X and/or Y; common logarithms of X and/or Y; powers of X and/or Y. The program produces printer plots of the data and deriviations. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Author - Walter Ritter O.; modified by Christopher T. Psaropulos.

> Christopher T. Psaropulos Available from originator only Inter-American Tropical Tuna Commission Southwest Fisheries Center Post Office Box 271 La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Biometry - Product-Moment Correlation Language - FORTRAN Coefficient, TCSB1 Hardware - Burroughs 6700

d

Computes the Pearson product-moment correlation coefficient for a pair of variables and its

confidence limits. In addition, the program computes and prints the means, standard deviations, standard errors, and covariances for the variable, as well as the equation of the principal and minor axes. The confidence limits for the slope of the principal axis are also computed and the coordinates of eight points are given for plotting confidence ellipses for bivariate means. Biometry, by Robert R. and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Cooley-Lonnes Multiple-Regression Analysis Language - FORTRAN
TCSB2 Hardware - Burroughs 6700

Computes a multiple-regression analysis for a single criterion and a maximum of 49 predictor variables. The Gauss-Jordan method is used in the solution of the normal equations. There is no restriction in the number of subjects for which score vectors may be presented. Output: Basic accumulations, means, standard deviations, dispersion matrix, and correlation matrix are printed and/or punched as required. Additional printed output, appropriately labeled, includes: The multiple-correlation coefficient; the F test criterion for multiple R, with its degrees of freedom; the beta weights; the squared beta weights; the B weights; and the intercept constant. Additional punched output includes: The beta weights; the B weights, and the intercept constant. Multivariate Procedures for Behavorial Sciences, by William W. Cooley and Paul R. Lonnes, John Wiley and Sons, Inc., New York. Modified by Walter Ritter O.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Biometry - Goodness of Fit to Discrete Language - FORTRAN
Frequency Distribution, TCSC1 Hardware - Burroughs 6700

Provides several options for the following operations: (1) Computes a binomial or Poisson distribution with specified parameters; (2) computes the deviations of an observed frequency distribution from a binomial or Poisson distribution of specified parameters or based on appropriate parameters estimated from the observed data; AG-test for goodness of fit is carried out; (3) A series of up to 10 observed frequency distributions may be read in and individually tested for goodness of fit to a specific distribution, followed by a test of homogeneity of the series of observed distributions; (4) A specified expected frequency distribution (other than binomial or Poisson) may be read in and used as the expected distributions; this may be entered in the form of relative frequencies or simply as ratios; the maximum number of classes for all cases is thirty; in the case of binomial and Poisson, the class marks cannot exceed 29. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter O.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 Or 253

Biometry - Basic Statistic for Ungrouped Data Language - FORTRAN

TCSC2

67

Hardware - Burroughs 6700

۸

Reads in samples of ungrouped continuous or meristic variates, then ranks and optimally performs transformations on these data. Output consists of a table of the various statistics computed: mean, median, variance, standard deviation, coefficient of variation, g_1 , g_2 , and the Kalmogorov Smirnov statistic D_{max} resulting from a comparison of the observed sample with a normal distribution based on the sample mean and variance; these are followed by their standard errors and 100 (1 - α)% confidence intervals where applicable. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter O.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Biometry - Basic Statistic for Data Grouped into a Frequency Distribution, TCSC3

Language - FORTRAN Hardware - Burroughs 6700

Similar to TCSC2, but intended for data grouped into a frequency distribution.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Biometry - Single Classification and Nested Anova, TCSD1

Language - FORTRAN Hardware - Burroughs 6700

Performs either a single classification or a k-level nested analysis of variance following the techniques presented in Sokal and Rohlf (1969). The basic anova table as well as the variance components are computed. The program allows for unequal sample sizes at any level. The input parameters are reproduced in the output, followed by a standard anova table giving SS, df, MS, and F_s . For nested anovas with unequal sample sizes, synthetic mean squares and their approximate degrees of freedom (using Satterthwaite's approximation) are given below each MS and df. Each F_s is the result of dividing the MS on its line by the synthetic MS from the level above it. When sample sizes are equal, the synthetic mean squares and their degrees of freedom are the same as their ordinary counterparts, but are printed out nevertheless by the program. No pooling is performed. The anova table is followed by a list of the estimated variance components expressed both in the original units and as percentages; these in turn are followed by a table of the coefficients of the expected mean squares. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter O.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Biometry - Factorial Anova TCSD2 Language - FORTRAN
Hardware - Burroughs 6700

Reads in data for a complete factorial analysis of variance with no replications. Using the technique described in Sokal and Rohlf (1969, Section 12.5), it is possible to use this program for single classification anova with equal sample sizes, multi-way analysis of variance with equal replications, and other completely balanced designs. Produces the standard anova table and provides as well an optional output of a table of deviations for all possible one-, two-, three-, four-way (and more) tables. The output is especially useful as input to various programs for testing differences among means and can be inspected for homogeneity of interaction terms. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter O.

Ą

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Biometry - Sum of Squares STP Language - FORTRAN
TCSD3 Hardware - Burroughs 6700

Tests the homogeneity of all subsets of means in anova, using the sums of squares simultaneous test procedure of Sokal and Rohlf (1969, Section 9.7). <u>Biometry</u>, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter O.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Biometry - Student-Newman-Keuls Test Language - FORTRAN
TCSD4 Hardware - Burroughs 6700

Performs a Student-Newman-Keuls <u>a posteriori</u> multiple range test. The SNK procedure is an example of a stepwise method using the range as the statistic to measure differences among means. <u>Biometry</u>, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. <u>Modified</u> by Walter Ritter O.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Biometry - Test of Homogeneity of Variances Language - FORTRAN
TSCEl Hardware - Burroughs 6700

Performs Bartlett's test of homogeneity of variances and the F_{max} test. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter O.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Biometry - Test of Equality of Means with Language - FORTRAN Heterogeneous Variances, TCSE2 Hardware - Burroughs 6700

Performs an approximate test of the equality of means when the variances are assumed to be heterogenous. The method differs from an ordinary single classification anova in that the means are weighted according to the reciprocal of the variance of the sample from which they were taken, and a special error MS must be used to take the weighting into account. The input parameters are reproduced in the output along with a listing of the means and variances for each sample. These are followed by the sample variance ratio F_g^* and the degrees of freedom required for looking up the critical F-value. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter 0.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Biometry - Tukey's Test for Nonadditivity

TCSE3

Language - FORTRAN

Hardware - Burroughs 6700

Performs Tukey's test for nonadditivity to ascertain whether the interaction found in a given set of data could be explained in terms of multiplicative main effects. This test is also useful when testing for nonadditivity in a two-way Model I anova without replication in experiments where it is reasonable to assume that interaction, if present at all, could only be due to multiplicative main effects. It partitions the interaction sum of squares into one degree of freedom due to multiplicative effects of the main effects on a residual sum of squares to represent the other possible interactions or to serve as error in case the anova has no replication. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter O.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Biometry - Kruskal-Wallis Test Language - FORTRAN
TSCE4 Language - FORTRAN
Hardware - Burroughs 6700

The Kruskal-Wallis test is a non-parametric method of single classification anova. It is called non-parametric because their null hypothesis is not concerned with specific parameters (such as the mean in analysis of variance) but only with distribution of the variates. This is based on the idea of "ranking" the variates in an example after pooling all groups and considering them as a single sample for purposes of ranking. This program performs the Kruskal-Wallis test for equality in the "location" of several samples. The input parameters and sample sizes are reproduced in the output, followed by the Kruskal-Wallis statistic H (adjusted, if necessary), which is to be compared with a chi-square distribution for degrees of freedom equal to a-1. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, Modified by Walter Ritter O.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

Biometry - Fisher's Exact Test Language - FORTRAN
TCSE5 Language - FORTRAN
Hardware - Burroughs 6700

Ł

Performs Fisher's exact test for independence in a 2 x 2 contingency table. The computation is based on the hypergeometric distribution with four classes. These probabilities are computed assuming that the row and column classifications are independent (the null hypothesis) and that the row and column totals are fixed. Biometry, by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter O.

Christopher T. Psaropulos Available from originator only
Inter-American Tropical Tuna Commission
Southwest Fisheries Center
Post Office Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

70

Biometry - R \times C Test of Independence in Contingency Tables, TCSE6

Language - FORTRAN Hardware - Burroughs 6700

Performs a test of independence in an $R \times C$ contingency table by means of the G test. Optionally it carries out an a posteriori test of all subsets of rows and columns in the $R \times C$ contingency table by the simultaneous test procedure. Biometry by Robert R. Sokal and F. James Rohlf, W.H. Freeman and Company, San Francisco, 1969. Modified by Walter Ritter 0.

Christopher T. Psaropulos Available from originator only Inter-American Tropical Tuna Commission

Southwest Fisheries Center Post Office Box 271

La Jolla, CA 92037 Telephone (714) 453-2820, ext. 310 or 253

POLLUTION

Monte Carlo Spill Tracker

Language - PL/1 Optimizer Hardware - IBM 370-168/216 K bytes (characters)

Provides insight on likely oil spill trajectories in a given region by season, using Monte Carlo sampling of Markov wind model at one- or three-hourly intervals; spill movement assumed to be linear combination of momentary wind and current vectors. Input: Map of area, output files from analysis of TDF-14 data, current hypothesis, postulated spill launch points. Output: Estimates of the likelihood of spill reaching various areas; estimates of the statistics of the time to reach such areas. See publications MITSG 74-20, "Primary, Physical Impacts of Offshore Petroleum Developments," by Stewart and Devanney, MIT Sea Grant Project Office, April 1974.

J.W. Devanney III Available from originator only Massachusetts Institute of Technology Room 5-207
Cambridge, MA 02139 Telephone (617) 253-5941

Thermal Pollution Model

Language - FORTRAN IV

Hardware - CDC 6500/CDC 1604/20K 60 bit words

Simulates the dispersion of heat from a source. Output is a printout of current and heat fields.

Kevin M. Rabe
Environmental Prediction
Research Facility
Naval Postgraduate School
Monterey, CA 93940

Available from originator only

Telephone (408) 646-2842

Substance Advection/Diffusion Routine

Language - FORTRAN Hardware - CDC 6500

Simulates the advection and diffusion of pollutants. The program uses a Lagrangian approach with a Fickian diffusion equation. Input: Current data, pollutant release location, concentration and time of release. Output: Pollutant spread fields. EPRF Tech. Note 1-74, "A Vertically Integrated Hydrodynamical-Numerical Model."

Taivo Laevastu Environmental Prediction Research Facility Naval Postgraduate School Monterey, CA 93940 Available from originator only

Telephone (408) 646-2937

Danish Advection Program

١

Language - FORTRAN

Hardware - CDC 3100/CDC 6500

Computes advection of pollutants (or mass) in a fluid in two dimensions. Input: Velocities in X and Y, mass and grid spacing in X and Y, all for each grid point; timestep and total time or advection. Output: Initial gridpoint of field advected and final field after total advection. Quasi-Lagrangian method used, utilizing mass, center of mass, and width of mass distribution, all for each grid point. Storage requirement is grid-size dependent: for NX by NY grid, (NX*NY*7) + (NX+1)*28 words. "A Method for Numerical Solution of the Advection Equation," by L.B. Pederson and L.P. Prahm, Meteorological Institute, Denmark, Aug. 1973, 36 pp.

Taivo Laevastu
Environmental Prediction
Research Facility
Naval Postgraduate School
Monterey, CA 93940

Available from originator only

Telephone (408) 646-2937

Ecological Statistical Computer Programs ECOSTAT

Language - ANS FORTRAN*
Hardware - IBM 360/370**

The system was developed as part of an extensive study undertaken by the County Sanitation Districts of Los Angeles and the Southern California Coastal Water Research Project to provide insight into the ecological effects of ocean discharge of treated wastewaters. Biological and physical data for analysis were available from semi-annual benthic surveys on the Palos Verdes Shelf. Due to the nature of the analysis and the probability that the system would be used by other agencies, it was decided that the programs would be made general and easily implemented and used in other computing environments and sampling studies. The system differs from other statistics packages in that it allows the user to define a taxonomic structure on encountered species and employ the resultant groupings in the calculation of diversity indices, T and F statistics, linear correlation coefficients, one-way analysis of variance, dissimilarity coefficients, and abiotic-biotic relationship tables. The user can also specify station groupings to be used in computing statistics.

Output: (1) Summary information: (a) raw data, (b) species distrubution, (c) dominant species; (2) Univariate statistics: (a) means, standard deviations by parameter for each station, (b) community diversity (8 measures - Brillouin's, Gleason's, Margalef's, Shannon-Weaver's, Simpson's, scaled Shannon-Weaver's, scaled Simpson's, scaled standard deviation), (c) T and F statistics between regions by parameter, (d) dissimilarity coefficients by taxon between regions, between samples for each station, between surveys by region, (e) ANOVA tables among surveys by region; (3) Multivariate statistics: (a) linear correlation coefficients by region between parameters; (4) Abiotic-biotic relationships: (a) means, standard deviations, ranges of physical parameters for each partition of relative abundance, (b) dominant species occurring at physical parameter class interval pairs.

(*With the following IBM extensions: Object-time dimensions transmitted in COMMON, INTEGER*2, END parameter in a READ, literal enclosed in apostrophes, mixed-mode expressions, NAMELIST, T format code.)

(**For all programs except BIOMASS, ABUNDANCE, and DIVERSITY, a direct access storage device is required. Since all data sets are accessed sequentially a tape system is possible, however, and with as few as three drives all analyses with the exceptions of those between surveys may be accomplished. The generation of Table VO (ANOVA among surveys) using five surveys, for example, requires a minimum of ten files to be open simultaneously, and, unless there are ten tape drives available, this would be impossible without using disk storage.)

"Ecological Statistical Computer Programs, User Guide," by Bruce Weinstein, Los Angeles County Sanitation Districts, August 1975.

Data Processing Available from originator only Technical Services Department
Los Angeles County Sanitation Districts
1955 Workman Mill Road
Whittier, CA 90601 Telephone (213) 699-7511

CURRENTS AND TRANSFER PROCESSES

Drift Bottle Statistics

Language - PL/1 Optimizer Hardware - IBM 360-168/200K

Used for determination of spatial and temporal conditions in drift bottle trajectories. Input: Standard NODC 80 character drift bottle records, formatted according to NODC Pub. M-6 in either card or tape form. Bottle records must be roughly sorted by launch point location to facilitate identification of recoveries occurring from a common launch event. Output: Launch and recovery group size distributions; pairwise correlations in recovery location and date. Recovery group size vs. launch group size; Chi-square tests of independent trajectory, hypothesis, etc. Brief discussion of results for U.S. Atlantic Coast available in publication MITSG 74-20, "Primary, Physical Impacts of Offshore Petroleum Developments," by Stewart and Devanney, MIT Sea Grant Project Office, April 1974.

Robert J. Stewart

Available from originator only

Massachusetts Institute of Technology

Room 5-207

Cambridge, MA 02139

Telephone (617) 253-5941

Drift Bottle Plots

Language - PL/1

Hardware - IBM 370-168/SC4020 CRT

Plots launch and recovery locations of drift bottles. Input: Data files screened and formatted by CNDNSDTA. Output: CRT plots of launch and recovery positions. See publication MITSG 74-20, "Primary, Physical Impacts of Offshore Petroleum Developments," by Stewart and Devanney, MIT Sea Grant Project Office, April 1974.

Robert J. Stewart

Available from originator only

Massachusetts Institute of Technology

Room 5-207

Cambridge, MA 02139

Telephone (617) 253-5941

Reformat and Sort Drift Bottle Data

CNDNSDTA

Language - PL/1

Hardware - IBM 370-168/250K/Disk

Reformats into condensed record format (28 characters), screens for bottle configuration, and sorts by launch point, filing into on-line (disk) storage. Input: Standard NODC 80 character drift bottle records per NODC publication M-6. Output: All drift bottles launched within "r" miles of "N" launch points are reformatted and filed in "N" separate data file.

Robert J. Stewart

Available from originator only

Massachusetts Institute of Technology

Room 5-207

Cambridge, MA 02139

Telephone (617) 253-5941

Current Profiles from Tilt Data

Language -

Hardware -

Calculates current profiles generated from tilt data obtained from Niskin current array. Current magnitude and direction are computed at each sensor from tilt and azimuth data by means of numerical algorithms developed from analysis of the three-dimensional cable equations. Input: Physical parameters to be modeled. Output: Profiles can be generated at a given time using one method. Profiles can also be generated for one-hour increments from the averaged data which have been curve fitted between sensor stations.

Gary T. Griffin Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Current Meter Data

Language - FORTRAN

Hardware - CDC 3300/Disk/UCC Plotter

 CREATE-C
 20K words

 CURRENT
 20K words

 CURRPLOT
 28K words

CREATE-C creates a disk file of raw data digitized from Braincon current meter film and consisting of arc endpoints and angles; listing also produced. CURRENT converts raw data to current speed, direction, etc., according to particular calibration and gives basic statistics: minimum and maximum speed, means, standard deviations, etc. Input: disk file from CREATE-C and a data card giving information about the data (e.g., format) and about the current meter used (type, observation time, etc.). Output: Listing of converted data and statistics and a new disk file of converted data. Using this data file and a plot data card, CURRPLOT prepares a tape for the UCC Plotter to give plots of speed vs. time, direction vs. time, and progressive vector plot. Plots are broken up into one-week units.

K. Crocker
Naval Underwater Systems Center
Newport, RI 02840

Available from originator only

Telephone (401) 841-3307

Current data SPECTRUM Language - FORTRAN Hardware - CDC 3300

Using processed data file from CURRENT and a preprocessing data card, gives autocorrelation and auto power spectrum for current speed and velocity components with preprocessing options for filtering, condensing, etc.

K. Crocker Naval Underwater Systems Center Newport, RI 02840 Available from originator only

Telephone (401) 841-3307

Optimized Multi-layer HN Model

Language - CDC FORTRAN EXTENDED

Hardware - CDC 7600 or 6500 w/CDC 3100/157K octal (60 bit) words on 7600

Computes surface deviations and integrated current velocities based on hydrodynamic equations for small-scale coastal and open ocean areas for up to three selected layers. The finite difference scheme proposed by Hansen (1938) is extended to multiple layer cases optimized for ease in practical application and for computer computation. Intermediate data tape prepared on CDC 3100. EPRF Tech. Paper 15-74, by R.A. Bauer.

T. Laevastu or A. Stroud Environmental Prediction Research Facility Naval Postgraduate School Monterey, CA 93940 Available from originator only

Telephone (408) 646-2937

Mean Drift Routine

Language - FORTRAN

Hardware - CDC 6500/CDC 1604

Generalized routine to simulate the drift of an object, given the current structure, wind fields, and object leeway. EPRF Tech. Note 1-74, "A Vertically Integrated Hydrodynamical-Numerical Model."

Taivo Laevastu
Environmental Prediction
Research Facility
Naval Postgraduate School
Monterey, CA 93940

Available from originator only

Telephone (408) 646-2937

Search and Rescue Planning NSAR

Language - FORTRAN Extended Hardware - CDC 6500/54K words

Provides an estimate of an object's position in the ocean at the time a search is initiated. Computes drift as a resultant of two components. In all cases 100 percent of the surface current is applied. Wind effects are handled through a series of leeway codes options. Input: FNWC surface wind and current field analysis and prognosis; object starting time and position, datum time, last known position, navigation error factors, leeway factors. Output: Datum points (latitude, longitude) for each datum time. OPNAV INST 3130.5A, 7 Dec. 1972, FNWC Tech. Note 60, August 1970.

LCDR John Gossner Fleet Numerical Weather Central Monterey, CA 93940 Available from originator only

Telephone (408) 646-2010

Current Meter Turbulence

Language - FORTRAN Hardware - IBM 7074

Gives an indication of turbulence in the ocean by computing measures of the deviations from means over various lengths of time. OS No. 572-2. Author - Robert R. Gleason.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

In-Situ Current

Language - FORTRAN V Hardware - UNIVAC 1108/1K words/Drum

Converts one-minute averages of Interocean Type II current meter to standard vectorial values. Produces vectorial angle and velocity for each data point and then combines vectorially to yield a mean value for entire period. Input: Card images of data points taken from Rustrak recorders. Output: Printout of vectorial and five-minute average values, current speed and direction in knots, and degrees true.

Philip Vinson U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (202) 433-3878

Water Displacement DISPLA

Language - FORTRAN
Hardware - UNIVAC 1108/1,200 36 bit words/
3 tape units

Computes water displacement resulting from ocean current action. Input: Current speed and direction values on tape produced by current meter print program. Output: Individual and cumulative displacements per selected unit time in nautical miles; tabular printout, tape, or both.

Gerald Williams U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (202) 433-4187

Current Meter Print

Language - FORTRAN

Hardware - UNIVAC 1108/10K 36 bit words/Drum/

3 tape units

Calculates ocean current speeds and directions from Geodyne AlO1 optical current meters. Values are converted to knots and degrees and are vectorially averaged over one-minute data frames, ten scans per frame. Input: Observed current parameters from meter converted from optical film to magnetic tape; parameters are in arbitrary units dependent on meter design. Output: Current speed and direction data; tabulated printout and tape. Tape output drives plotter program.

Gerald Williams

Available from originator only

U.S. Naval Oceanographic Office Washington, DC 20373

Telephone (202) 433-4187

Current Meter Plot

Language - FORTRAN

Hardware - UNIVAC 1108/9K 36 bit words/3 tape

units/CalComp Plotter

Produces plotter tape to plot ocean current speed and direction information. Program calls CalComp subroutines. Input: Current speed and direction data on tape produced by Current Meter Print Program. Output: Histograms, polar plots, and point plots.

Gerald Williams

Available from originator only

U.S. Naval Oceanographic Office Washington, DC 20373

Telephone (202) 433-4187

Convert Current Meter Tape

Language - FORTRAN V

MAGPACK

Hardware - UNIVAC 1108/EXEC 8/Instructions 647

words/Data 707 words/2 tape units

Converts binary data on tape from Geodyne MK III current meter to BCD tape, formatted and blocked for further processing, with edited time, compass, vane, tilt, and speed rotor counts. Binary data decoded with FORTRAN field functions and output blocked and formatted with subroutine NAVIO. Author - Peter J. Topoly.

> Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373

Available from originator only

Telephone (301) 763-1449

Current Meter Data MPRINTO

Language - FORTRAN V

Hardware - UNIVAC 1108/EXEC 8/Instructions

2 tape units

Computes frame and scan values of current meters (Geodyne AlO1 optical and MK III magnetic); calculates normalized unit vectors for vectorial speed, lists data, and produces packed BCD tape. Input: BCD tape with rotor counts of compass, vane, speed, and tilt. Output: Packed BCD tape of frame data and averaged frame data (pack rate and averaging rate optional). Author - Peter J. Topoly.

> Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373

Available from originator only

Telephone (301) 763-1449

Current Meter Clock Sequence

Language - FORTRAN IV Extended

XTAL

Hardware - XDS Sigma 7/48K words (192K bytes)

Verifies sequence of crystal clock count values from VACM or Geodyne 850 current meters. Bad

clock values are identified by use of differencing techniques. Input: Clock values on tape in CARP format. Output: Statistics of clock performance with catalog of erroneous values.

John A. Maltais
Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-1400

Current Meter Calibration

Language - FORTRAN IV Extended

CASDEC

Hardware - XDS Sigma 7/48K words (192K bytes)

Applies calibration parameters to raw VACM current meter data on tape in CARP format, identifies and removes bad values, and stores the output on tape in standard buoy format.

John A. Maltais

Available from originator only

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Current Meter Data Reduction and Editing

CARP

Language - HP Assembly Language

Hardware - HP 2100/8K locations/Cassette

reader/Keyboard device

Transfers current meter data from VACM cassette or Geodyne 850 cartridge magnetic tape to nine-track computer compatible tape and flags data cycles which have errors.

Mary Hunt

Available from originator only

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Surface Current Summary

SUFCUR

Language - Assembler

Hardware - IBM 360-65

Produces a statistical summary of surface current observations for each Marsden (ten-degree) square, one-degree square, or five-degree square and month for a given area. Author - Jeffrey Gordon.

Oceanographic Services Branch

National Oceanographic Data Center

NOAA/EDS

Washington, DC 20235

Copy on file at NODC

Telephone (202) 634-7439

Vector Time Series CURPLT6

Language - FORTRAN IV

Hardware - CDC 6400 (SCOPE 3.4)/115K (octal) 10-character words/CalComp

936/905 Plotting System

Computes and plots statistics, histograms, time series, progressive vector diagram and spectra for time series of current meter data. Input: Current meter time series on tape in CDC 6400 binary format; maximum number of data points is 5,326. Output: Listing and tape for off-line plotter. Perfect Daniel frequency window used to compute spectral estimate from FFT-generated periodogram values.

James R. Holbrook
Pacific Marine Environmental
Laboratory, NOAA
3711 Fifteenth Avenue, N.E.
Seattle, WA 98105

Available from originator only

Telephone (206) 442-0199

Processes Current Instrument Observations

Language - FORTRAN II Hardware - IBM 1620 II

Several programs and subroutines for processing Michelsens Container data (automatic current and temperature measurements), for processing Ekman current meter data, and for harmonic analysis and power spectrum analysis. NATO Subcommittee on Oceanographic Research Technical Report No. 37 (Irminger Sea Project), "Some FORTRAN II Programs for Computer Processing of Oceanographic Observations," by H.E. Sweers, Feb. 1967.

Geophysical Institute University of Bergen Bergen, Norway Copy on file at NODC (above report)

Current Meter Data Processing System

Language - MS FORTRAN
Hardware - CDC 3150/20K words/2 tape units/
CalComp Plotter

Processes data primarily from Braincon or Aanderaa moored current meters; performs automatic editing, tidal analysis residuals, tide prediction, filtering, plotting; power spectra and statistical means and histograms are generated. Also performs file management.

Doug Gregory Bedford Institute of Oceanography P. O. Box 1006 Dartmouth, N. S. B2Y 4A2 Available from originator only

Telephone (902) 426-2390

TIDES

Astronomical Tide Prediction

Language - FORTRAN IV

Hardware - IBM 360-195/80K bytes

Computes hourly values and time and heights of high and low astronomical tides by harmonic method. Input: Tidal constituent constants. Technical Memorandum WBTM TDL-6.

N.A. Pore

Available from originator only

Techniques Development Laboratory National Weather Service, NOAA 8060 Thirteenth Street Silver Spring, MD 20910

Telephone (301) 427-7614

Tides in the Open Sea

Language - FORTRAN 60

Hardware -

Predicts tides in the open sea, utilizing the basic hydrodynamic equations, for the principal lunar semidiurnal constituent M2. Application is made to the analysis of the tidal regime in the Gulf of Mexico. Thesis by Thomas H. Gainer, Jr., May 1966.

> Naval Postgraduate School Monterey, CA 93940

Available from NTIS, Order No. AD 489 096/LK, \$4.75 paper, \$2.25 microfiche.

Harmonic Analysis of Data at Tidal Frequencies

Language - FORTRAN IV Hardware - CDC 6600*/140K

For analyzing equally spaced short-period data (15 days or 29 days), this program utilizes the standard Fourier analysis and traditional methods of the former Coast and Geodetic Survey. Either a vector (polar form) or scalar variable may be analyzed; for vector series, the program allows either a major-minor axis analysis or a north-east component approach. No data series may exceed 7,000 terms without redimensioning in the program, and no series of other than 15 or 29 days of uniformly spaced data can be analyzed. The program accepts input via magnetic tape or punched cards in any format with the restriction that, for vectors with magnitude and direction in the same record, the angles must precede the amplitudes in the record. For vectors specified by one file of amplitudes and one file of directions, the amplitude file must be read first. Output: mean amplitudes and phases of 26 tidal constituents. NOAA Technical Report NOS 41, "A User's Guide to a Computer Program for Harmonic Analysis of Data at Tidal Frequencies," by R. E. Dennis and E. E. Long, July 1971.

(*The program is executable with minor adjustments on any compatible machine having a 140K memory and access to arcsine and arccosine systems functions. Computing time is approximately 1.5 seconds per station on the CDC 6600.)

> Charles R. Muirhead Chief, Oceanographic Surveys Branch National Ocean Survey, NOAA 6001 Executive Boulevard Rockville, MD 20852

Deck available from originator only; for above report (including program listing), contact Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402. Price: \$.70, stock number 0317-0022. Telephone (301) 443-8501

Theoretical Radial Tidal Force

Language - MAD Hardware - IBM 7090

Input: (1) astronomical data from the nautical almanac; (2) the solar ephemeris obtained from the same source (only the earth-sun radius vector is needed); (3) list of local constants,

atitude and longitude in degrees of arc and minutes, elevation in centimeters. Output: Lunar, olar, and total tidal forces and the vector date. Program accommodates maximum of 725 hours [30 days) of data in core storage. Author - Henry L. Pollak.

Dept. of Earth and Planetary Sciences 414 Space Research Coordination Center University of Pittsburg Pittsburg, PA 15213 Copy on file at NODC (documented listing)

WAVES

Hurricane Storm Surge Forecasts SPLASH I

Language - FORTRAN IV

Hardware - CDC 6600/77K words

Predicts hurricane storm surges for landfalling storms, using numerical solutions of linearized transport equations with surface wind forcing and time history bottom stress. Input: Basin data and storm variables, such as intensity, size, and vector storm motion. Output: Storm surge envelopes, storm definitions, and astronomical tides.

Celso S. Barrientos Techniques Development Laboratory National Weather Service, NOAA 8060 Thirteenth Street Silver Spring, MD 20910 Available from NTIS: Magnetic tape, Order. No. COM-75-10180/AS, \$250 domestic, \$312 foreign; User's Guide, Order No. COM-75-10181/AS, \$3.25 domestic, \$5.25 foreign Telephone (301) 427-7613

Hurricane Storm Surge Forecasts SPLASH II Language - FORTRAN IV

Hardware - CDC 6600/77K octal words

Predicts storm surges for storms with general track and variant storm conditions, using numerical solutions of linearized transport equations with surface wind forcing and time history bottom stress. Input: Basin data, storm variables, and geographical description of storm track. Output: Storm surge envelopes, space-time history of surges, storm characteristics, and astronomical tides.

Celso S. Barrientos Techniques Development Laboratory National Weather Service, NOAA 8060 Thirteenth Street Silver Spring, MD 20910 Available from NTIS: See SPLASH I

Telephone (301) 427-7613

East Coast Storm Surge

Language - FORTRAN IV

Hardware - IBM 360-195/185K bytes

Predicts storm surges generated by extratropical storms for eleven stations along the U.S. East Coast. Forecast equations derived by statistical screening regression. Input: National Meteorological Center PE model sea-level pressure forecasts. Output: Storm surge forecasts to 48 hours at 6-hour intervals, for 11 locations. NOAA Technical Memorandum NWS TDL-50.

N.A. Pore Techniques Development Laboratory National Weather Service 8060 Thirteenth Street Silver Spring, MD 20910

Available from originator only

Telephone (301) 427-7614

Wave Forecasts

Language - FORTRAN IV

Hardware - IBM 360-195/410K bytes

Forecasts wind waves and swells for the Atlantic and Pacific Oceans, using singular method based on the Sverdrup-Munk forecasting system. Input: National Meteorological Center 1000-mb PE model wind forecasts; Output: Wind wave and swell grid printed charts to +48 hours. Technical Memoranda WBTM TDL-13 and TDL-17.

N.A. Pore Techniques Development Laboratory National Weather Service, NOAA 8060 Thirteenth Street Silver Spring, MD 20910 Available from originator only

Telephone (301) 427-7614

Wave Bottom Velocity

Language - FORTRAN IV G Level 21

Hardware - IBM 360-75/96K

Computes and plots maximum bottom (horizontal) orbital velocity versus still water depth for Airy waves of given height and period. Output: log-log graph of u(max) at sea floor vs. water depth for each wave; also, a listing of the wave's steepness, u(max) at bottom, wave length, and celerity is produced.

John McHone Geology Department University of Illinois Urbana, IL 61801 Copy on file at NODC (listing, documentation)

Telephone (217) 333-3542

French Spectro-Angular Wave Model

Language - FORTRAN IV/COMPASS Hardware - CDC 6500/CDC 7600

Computes sea-state, using a spectral approach involving sixteen directions and six periods, devised by Gelei et al. Input: Wind speed and direction. Output: Significant wave height period of highest energy and direction of maximum energy fields. Detailed spectral breakdown for up to twelve points.

Kevin M. Rabe Environmental Prediction Research Facility Naval Postgraduate School Monterey, CA 93940 Available from originator only

Telephone (408) 646-2842

Surf Prediction Model

Language - FORTRAN IV Hardware - CDC 3100/16K 48 bit words

Produces calculated wave ray paths, including the wave information and refraction and shoaling coefficients, using a modified Dobson approach to the solution of the general wave refraction. Technical Report No. 16, by B.S.L. Smith and F.E. Camfield, College of Marine Studies, University of Delaware.

Kevin M. Rabe
Environmental Prediction
Research Facility
Naval Postgraduate School
Monterey, CA 93940

Available from originator only

Telephone (408) 646-2842

Singular Wave Prediction Model

Language - FORTRAN

Hardware - CDC 3100/CDC 3200/32K 24 bit words

Produces a wave height analysis for semi-enclosed seas. Uses a modified geostrophic wind derived from a local pressure analysis to generate an analysis of the sea state. Output: Wave height (ft), wave period (sec), wind speed (m sec-1) and wind direction (degrees). EPRF Program Note 8, "The Wave 32 Program," by S. Larson and A.E. Anderson, Jr.

Sigurd Larson
Environmental Prediction
Research Facility
Naval Postgraduate School
Monterey, CA 93940

Available from originator only

Telephone (408) 646-2868

Wave Interaction with Current CAPGRAY

Language - FORTRAN IV Hardware - IBM 370-165/2000K Region

Calculates wave length, wave number, wave slope, and wave energy changes for waves in the capillary-gravity subrange as they interact with non-uniform current. A perturbation scheme using the gravity contribution of the capillary-gravity wave as the perturbation parameter was used to integrate the energy equation exactly. Input: Wave number K for waves with no current.

Steven R. Long Available from originator only Center for Marine and Coastal Studies
North Carolina State University
Raleigh, NC 27607 Telephone (919) 737-2212

Shipborne Wave Recorder Analysis SBWRO

Language - FORTRAN IV Hardware - IBM 1800

Given values of the highest and second highest crests, the lowest and second lowest troughs, the number of zero crossings, and the number of crests in a short record from the NIO shipborne wave recorder, computes the spectral width parameters and the significant wave height and also the predicted maximum height in a period of three hours; outputs the results on line-printer and on disk. NIO Program No. 89. Author - Eileen Page.

National Institute of Oceanography Copy on file at NODC (listing, documentation) Wormley, Godalming, Surrey, England

Storm Surge

Language - FORTRAN IV Hardware - UNIVAC 1108/10K words

Numerical models, based on the hydrodynamic equation and local depth fields, are used to determine the flood levels expected from specific hypothetical storms. Publication TM-35, "Storm Surge on the Open Coast; Fundamentals and Simplified Prediction," May 1971.

(1) For program release:
Colonel James L. Trayers
Commander and Director
Coastal Engineering Research Center
Kingman Building
Fort Belvoir, VA 22060

Available from originator only

(2) For program information:
D. Lee Harris
Chief, Oceanography Branch
Coastal Engineering Research Center

Wave Refraction

Language - FORTRAN IV Hardware - UNIVAC 1108/15K words/Plotter

Calculates and plots surface wave rays. Input: Depth grid; xy and angle starting point of rays. Output: Plotted output of shoreline and wave rays; listing of wave ray x, y, angle, time and depth. Publication TM-17, "A Method for Calculating and Plotting Surface Wave Rays," Feb. 1966.

(1) For program release:
Colonel James L. Trayers
Commander and Director
Coastal Engineering Research Center
Kingman Building
Fort Belvoir, VA 22060

Available from originator only

(2) For program informationD. Lee HarrisChief, Oceanography BranchCoastal Engineering Research Center

Water-Wave Teaching Aids

Language - FORTRAN Hardware - IBM 360-40

In teaching the engineering applications of water-wave theory, it is often desirable to have students make numerical calculations based on the various wave theories. This is practical, however, only for the simplest of the water-wave theories, as the computations involved with higher order theories are quite tedious and time-consuming. This collection of programs and subroutines represents an attempt to relieve students of these lengthy and detailed computations, so that they can use the theoretical results in solving realistic problems. At the same time, there are dangers inherent in developing and using computer programs for teaching purposes. The principal difficulty is the "black box" syndrome, where the students merely punch some numbers into a card and, later, get more numbers back from the machine, without the vaguest idea of what happened in between. In order to avoid this difficulty, and, in addition, to provide wide flexibility, it was decided that the best format for this collection would be many short, single-function subroutines, which compute some of the more tedious intermediate results for a given problem, and which can be easily modified or added to by the user. The disadvantage of this approach is that it requires some knowledge of FORTRAN on the part of the student. It is believed, that this disadvantage is outweighed by the advantage of making the computational processes both clear and flexible.

LENG1 computes wave length and speed, given the water depth and wave period, using small-amplitude (and Stokes' second-order) wave theory. Values are returned to the calling program through the CALL statement and are also printed out during execution. LENG3 uses Stokes' third-order wave theory.

PROF1 computes water surface elevations, $\operatorname{eta}(x)$ or $\operatorname{eta}(t)$, over a wave period, using linear wave theory; returns arrays of x, t, and eta through the CALL statement; prints input data and the three arrays. Alternate subroutines PROF2 and PROF3 accomplish the same purpose using Stokes' second— and third—order wave equations.

Subroutines UMAX1, WMAX1, UTMAX1, and WTMAX1 compute u(max), w(max), the partial derivative of u with respect to t(max), or the partial derivative of w with respect to t(max), i.e., the maximum flow velocities in the x and z directions and their corresponding temporal accelerations, as a function of z, from z=-h to z=eta(max), using linear wave theory. Returns arrays of z and u(max) etc., for z=-h, -(29/30)h, -(28/30)h,...for z less than eta(max), through the CALL statement; prints the input data and the two arrays. Alternative sets of routines carry out the same purpose using Stokes' second— and third-order equations.

Subroutines UOFT1, WOFT1, UTOFT1, and WTOFT1 compute values of u(t), w(t), the partial derivative of u with respect to t, or the partial derivative of w with respect to t, i.e., the horizontal and vertical flow velocities and their accelerations, over a wave period (T) at a given depth (z) using linear wave theory. Returns arrays of t and u(t), etc., for t=0, T/40, 2T/40,..., T, through the CALL statement; prints the input data and the two arrays. Alternative sets of routines carry out the same purpose using Stokes' second— and third—order equations.

The following four programs, dealing with spectra, were adapted (with permission) from the Share program G1 BE TISR, written at Bell Laboratories by M.J.R. Healy, 1962: DETRND removes the mean, or the mean and linear trend (slope) from a time series X(I), I=1,N; AUTCOV computes the autocovariance, Y(K), K=0,L, of the time series X(I), I=1,N; CRSCOV computes the auto- and cross-covariances, ZXX(K), etc., of the two sequences X(I), Y(I), I=1, N, for lags from 0 to L; FOURTR computes either the sine or cosine transform, Y(K), K=1, H+1, of the series X(K), K=1, N+1 (smoothing of either is optional, with coefficients .25, .50, .25).

PROFILE computes and plots the wave profile given a spectrum (in the form of the Fourier coefficients). Output: A printer plot (on a printer with a 132-character line) of eta vs. t.

REFL1 computes and prints water surface profiles for the partial (two-dimensional) reflection of a linear (small-amplitude) wave from a structure.

FORCE AND MOMENT computes the total force and moment (about the base, or "mud line") on a circular cylindrical pile as a function of time, using linear theory integrated to the actual water surface. A table of F and $M_{\rm O}$ vs. t is printed out.

EDIST computes the force distribution on a pile, using linear theory. Prints out the data and the force distribution as a function of time.

Listed and documented in Hydrodynamics Laboratory Technical Note No. 13, "Water Wave Teaching Aids," by R.H. Cross, Sept. 1968.

Department of Civil Engineering Copy on file at NODC (above report) Massachusetts Institute of Technology Cambridge, MA 02139

AIR-SEA INTERACTION AND HEAT BUDGET

Markovian Analysis of TDF-14 Wind Data

Language- PL/1 Optimizer
Hardware - IBM 370-180/260K bytes (characters)

Produces 9 x 9 and 33 x 33 matrices of wind transition probabilities for user-supplied interval. Assumes wind can be modeled as a Markov process, in which likelihood of wind speed and direction in next interval depends only on current wind speed and direction. Input: TDF-14 formatted tapes of hourly and three-hourly weather station data, available from National Climatic Center, Asheville, NC 28801. Output: Wind transition matrices by season, steady-state probabilities, distribution of wind speed by direction. See publication MITSG 74-20, "Primary, Physical Impacts of Offshore Petroleum Development," by Stewart and Devanney, MIT Sea Grant Project Office, April 1974.

J.W. Devanney III Available from originator only Massachusetts Institute of Technology Room 5-207
Cambridge, MA 02139 Telephone (617) 253-5941

Summarizes Weather Reports
SYNOP

Language - FORTRAN (ALGOL input routine) Hardware - Burroughs 6700/Less than 20K words

Processes synoptic marine radio weather reports to produce summaries of various items, by month. The validity of the data is checked against long-term mean values. Input: Disk files prepared separately from punched cards. Output: Printed summaries by one-, two-, and five-degree quadrangles, of sea and air temperatures, heat budget information, and barometric pressure; also punched cards for selected summary items.

A.J. Good Available from originator only Southwest Fisheries Center
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037 Telephone (714) 453-2820, ext. 325

Pyranometer and Radiometer Time Series RAD

Language - FORTRAN

Hardware - CDC 6400/53K words

Converts pyranometer and new radiometer readings to radiant intensity. Input: Cards with punched values of time, voltage values from a net radiometer, pyranometer, humidity sensor, air thermistor, wind speed detecter, and values of sea-surface temperature. Output: Listing of the above values converted to proper units plus computed values of net solar radiation, evaporative and conductive fluxes, total flux, effective back radiation, transmittance, solar altitude, and albedo.

R.K. Reed
Pacific Marine Environmental
Laboratory, NOAA
3711 Fifteenth Avenue N.E.
Seattle, WA 98105

Available from originator only

Telephone (206) 442-0199

Ocean Climatology Analysis Model 'ANALYS

Language - FORTRAN
Hardware - CDC 1604/16K 48 bit words/Drum/
3 tape units

Produces monthly climatological data fields. Input: Synoptic fields, first-guess climatology field. Uses a Laplacian relaxation technique. Computer Applications, Inc., Tech. Report,

"Documentation of Subroutine ANALYS," by J.N. Perdue.

Kevin M. Rabe Environmental Prediction Research Facility Naval Postgraduate School Monterey, CA 93940

Available from originator only

Telephone (408) 646-2842

Hurricane Heat Potential Model

Language - FORTRAN IV

Hardware - CDC 6500/20K 60 bit words/Varian

Plotter optional

Computes the hurricane heat potential using the station temperature profiles in the form of punched cards in 4-D format. Output: a profile plot, hurricane heat potential, final Varian plot of area with all heat potentials plotted. Thesis by LCDR Shuman.

> Kevin M. Rabe Environmental Prediction Research Facility Naval Postgraduate School Monterey, CA 93940

Available from originator only

Telephone (408) 646-2842

Mixed Layer Depth Analysis Model

Language - FORTRAN/COMPASS

MEDMLD

Hardware - CDC 3100/CDC 3200/32K 24 bit words/

Drum/3 tape units

Generates an analyzed mixed layer depth field using ship reports and a first-guess field in the form of an adjusted climatological MLD field. The program uses a Laplacian analysis and relaxation scheme to generate the final field. Output: An analyzed mixed layer depth field on a synoptic basis. EPRF Programming Note 7, "Mediterranean Mixed Layer Depth Analysis Program MEDMLD," by A.E. Anderson, Jr.

> Sigurd Larson Environmental Prediction Research Facility Naval Postgraduate School Monterey, CA 93940

Available from originator only

Telephone (408) 646-2868

Atmospheric Water Content Model

Language FORTRAN (CDC 3100 MSOS) Hardware - CDC 3100/12K octal words (24 bit)/

15K octal words with system (MSOS)

Computes total grams of water present in atmospheric column surrounding ascent of radiosonde. The method used is based on Smithsonian tables and formulae. Compressibility of moist air is assumed equal to one. Output: Various intermediate values plus geometric height and total quantity of water in grams.

> T. Laevastu or A. Stroud Environmental Prediction Research Facility Naval Postgraduate School Monterey, CA 93940

Available from originator only

Telephone (408) 646-2937

Ocean-Atmospheric Feedback Model

Language - FORTRAN IV

Hardware - CDC 6500/70K 60 bit words

Simulates the response of the surface air to sea-surface properties and also the processes of

mesoscale feedback mechanisms. EPRF Tech. Paper 2-72, "The Effects of Oceanic Fronts on Properties of the Atmospheric Boundary Layer," by T. Laevastu, K. Rabe, and G.D. Hamilton.

> Kevin M. Rabe Environmental Prediction Research Facility Naval Postgraduate School Monterey, CA 93940

Available from originator only

Telephone (408) 646-2842

Wind Computation from Ship Observations TRUWIND

Language - FORTRAN Hardware - CDC 1604/16K 48 bit words

Calculates the true wind direction in degrees and speed in knots, given the direction and speed of the ship and the observed wind direction and speed. EPRF Program Note 16, "Program TRUWIND," by Baldwin van der Bijl.

> Taivo Laevastu Environmental Prediction Research Facility Naval Postgraduate School Monterey, CA 93940

Available from originator only

Telephone (408) 646-2937

Mie Scattering Computations

Language - FORTRAN

Hardware - CDC 3800/CDC 6600/32K

Uses Mie scattering theory to compute the angular distribution of scattered radiation from spherical particles, for a range of values of index of refraction and size parameter $\alpha=2\pi r/\lambda$ (where $r = particle radius and <math>\lambda = wavelength of incident radiation)$.

> James W. Fitzgerald Naval Research Laboratory Washington, DC 20375

Available from originator only

Telephone (202) 767-2362

Solar Radiation Conversion

Language - FORTRAN Hardware - IBM 7074

Averages the radiation readings from the Eppley pyrheliometer and Beckman-Whitley radiometer for every 15 minutes. Converts from MV to Langleys/min. and calculates net radiation from both instruments. A modification of this program was made to include a Thornthwaite net radiometer. Authors - S.M. Lazanoff; modified by Mary E. Myers.

> Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373

Available from originator only

Telephone (301) 763-1449

Wind Stress

Language - FORTRAN Hardware - IBM 7074

Determines wind stress on the ocean surface. OS No. 53462. Author - W.H. Gemmill.

Available from originator only

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373

Telephone (301) 763-1449

Two-Dimensional Power Spectrum for SWOP II

Language - FORTRAN Hardware - IBM 7074 Determination of spectrum associated with the spatial distribution of energy as obtained from an instantaneous picture of the ocean taken from aircraft (SWOP II). OS NO. 53484. Author - C.M. Winger.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

Prediction of Vertical Temperature Change

Language - FORTRAN

Hardware - IBM 7074/Benson-Lehner Plotter

A technique based primarily on heat budget and wind mixing calculations has been developed for predicting the vertical thermal structure of the ocean; the technique essentially modifies the initial thermal structure through incident solar radiation, back radiation, sensible and evaporative heat exchange, convective heat transfer in the water mass, and wind mixing. Predictions are made at six-hour intervals until 1200Z on the date of forecast. The predicted BT is printed out, and also can be plotted with a Benson-Lehner Model J plotter. Authors - W.H. Gemmill and D.B. Nix. Informal manuscript report IMR No. 0-42-65, Oct. 1965. (See also IMR No. 0-45-65 by B. Thompson and IMR No. 0-13-66 by Barnett and Amstutz.) Program listings separate from reports.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Copy on file at NODC (Above reports 0-42-65 and 0-45-65; also listings) Telephone (301) 763-1449

Cloud Cover and Daily Sea Temperature

Language - FORTRAN Hardware - IBM 7074

Divides cloud cover into three groups and computes mean temperature by hour of day and by day for each depth. OS No. 53414. Author - D.B. Nix.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

Sea Ice Studies
YARIT, FLIP, SALPR, RITE

Language - FORTRAN IV Hardware - IBM 7090-94

A generalized program with several options that allow considerable latitude in the specification of input and output data. A main program reads in the input data and summarizes the results of each year's integration. Subroutine YARIT calculates the temperature and thickness changes of the ice and snow for each time step during the year. Subroutine FLIP takes the monthly values of the independent energy fluxes at the upper boundary and produces smoothed values for each time step. Subroutine SALPR calculates the salinity profile for each time step. Finally, subroutine RITE writes the temperature profile, ice thickness and mass changes for each ten-day period throughout the year. Memorandum RM-6093-PR, "Numerical Prediction of the Thermodynamic Response of Arctic Sea Ice to Environmental Changes," by G.A. Maykut and N. Untersteiner, Nov. 1969. Prepared for U.S. Air Force Project Rand.

The Rand Corporation 1700 Main Street Santa Monica, CA 90406 Available from NTIS, Order No. Ad 698 733/LK, \$7.00 paper, \$2.25 microfiche.

Wind Drift and Concentration of Sea Ice ICEGRID MODIFIED

Language - FORTRAN 60 Hardware - IBM 1604

Takes into consideration the effects of melting on the production of five-day forecasts of the wind drift and concentration of sea ice, using equations after Zubov and an earlier program of Knodle. Uses a 26x21 grid-point array with variable scale. Output fields are concentration, direction, and distance of movement. Incorporates programs ICEMELT and ICEGRID. Thesis by Kenneth M. Irvine, 1965.

Naval Postgraduate School Monterey, CA 93940 Available from NTIS, Order. No. AD 475 252/LK, \$4.25 paper, \$2.25 microfiche.

Iceberg Drift ICE-PLOT Language - FORTRAN IV
Hardware - CDC 3300/31K words

Provides twelve hours of iceberg drift, iceberg input for Ice Bulletin, and map outline for FAX broadcast. Input: Twelve-hour average wind field, monthly surface current, and initial iceberg position (or previous, updated position if not a new berg). Output: Listing of new iceberg positions, Ice Bulletin message form, and map of approximate new iceberg positions. Vector addition of average winds and currents using four geographical "courses," twenty minutes (lat./long.) apart.

CDR A.D. Super Available from originator only International Ice Patrol
U.S. Coast Guard
Bldg. 110, Coast Guard Support Center
Governors Island, NY 10004 Telephone (212) 264-4798

Ice Drift Analysis/Forecast

Language - FORTRAN II
Hardware - CDC 160A/8K 12 bit words/3 tape
units

Forecast or analyzed geostrophic winds and average sea-surface currents on magnetic tape are required input. The geostrophic winds are averaged over the time period specified by type-writer input. The ice drift equations are applied to the resultant wind, and sea surface currents are added. Output is in the form of forecast or analyzed ice drift (movement) at predetermined locations (points) to a maximum of 207.

Lt. Roland A. Garcia, USN Fleet Weather Facility Suitland Suitland, MD 20373 Copy on file at NODC (listing, documentation)
Telephone (301) 763-5972

SOUND

Normal Mode Calculations NORMOD3

Language - FORTRAN IV

Hardware - CDC 6500/60K octal words/CalComp

or other plotter

Calculates discrete normal modes and resulting propagation loss for depths and ranges of interest. This is a deep water version of a program originally written by Newman and Ingenito (NRL Report No. 2381, 1972). Appropriate for deep profiles and moderate frequencies (~100 Hz), the program uses a finite difference technique to generate mode shapes from the bottom up to the surface. It searches for appropriate eigenvalues yielding proper number of zero crossings and zero pressure at the surface. NOL Tech. Report 74-95.

> Ira M. Blatstein Naval Surface Weapons Center

Available from originator only

White Oak

Silver Spring, MD 20910

Telephone (202) 394-2583

Horizontal Range RANGE

Language - FORTRAN Hardware - CDC 6400

Computes horizontal range from a receiver to a sound source as a function of the D/E angle, the sound speed profile, the source and receiver depths, and the water depth and bottom slope at the point of bottom reflection. Assumes that the surface is flat, no horizontal variations in sound speed profile, and a flat earth. Only the two-dimensional case is considered. NOL Tech. Note 9856.

> M. M. Coate Naval Surface Weapons Center

Available from originator only

Code 221 White Oak

Silver Spring, MD 20910

Telephone (202) 394-2334

Sound Scattering by Organisms

SKAT

Language - FORTRAN IV

Hardware - CDC 1604/16K 48 bit words

Simulates the scattering of sound by organisms of various shapes and dimensions.

Taivo Laevastu Environmental Prediction

Research Facility Naval Postgraduate School

Monterey, CA 93940

Available from originator only

Telephone (408) 646-2937

Normal Mode Propagation Model

Language - FORTRAN V

Hardware - UNIVAC 1108/Drum

Produces propagation loss as a function of range and depth, time history of received pulses, mode enhancement information, ray equivalents, group velocity, phase velocity of modes, using as input sound velocity profiles, frequency, source and receiver depths, bottom topography and composition, and selection of modes. For certain plots, plotting programs are required. NUSC Report 4887-II.

> William G. Kanabis Naval Underwater Systems Center

Available from originator only

New London, CT 06320

Telephone (203) 442-0771, ext. 2353

Sound Refraction Corrections FITIT

Language - FORTRAN Hardware - CDC 3300

Computes data and fits polynomial functions to variable used to correct for bending of non-reflecting, nonvertexing sound rays. Least-squared-error type fitting (stepwise regression not used, but would improve program). Input: Sound velocity profile, limits of integration, domain of polynomial. Output: First to fifth degree polynomials, accuracy of FIT.

A.E. Vaas Naval Underwater Systems Center Newport, RI 02840 Available from originator only

Telephone (401) 841-3435

Beam Patterns and Widths GBEAM

Language - FORTRAN V
Hardware - UNIVAC 1108/18K words/IGS Plotting
System

Computes beam patterns and their beam widths for three-dimensional array with arbitrary element spacings, taking into consideration individual element's directionality, selectable delay, and shading. Also calculates directivity index and/or reverberation index. Formulation based on three-dimensional spherical and solid geometry. Directivity index and reverberation index calculations are carried out by two-dimensional parabolic numerical integration. NUSC Technical Report 4687.

Ding Lee or Gustave A. Leibiger Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771

Statistics of Acoustic Measurements and Predictions - STAMP

Language - FORTRAN V

Hardware - UNIVAC 1108/60K variable

A general purpose processing program which includes a module for performing statistics of acoustic measurements and predictions. Storage requirement is variable; program is segmented. 60K is the maximum. User's Guide in preparation.

Richard B. Lauer Naval Underwater Systems Center New London, CT 06320

Available from originator only

Telephone (203) 442-0771, ext. 2827

Propagation Loss FAST FIELD PROGRAM Language - FORTRAN IV Hardware - UNIVAC 1108

Calculates underwater acoustic propagation loss as a function of range for a point monochromatic source in a medium with an arbitrary sound speed profile versus depth. Special input-output requirement: Sound speed profile fitting program. NUSC Report Nos. 1046 and 4103.

Frederick R. DiNapoli Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771, ext. 2647

Bottom Reflectivity

Language - FORTRAN II Hardware - UNIVAC 1108

Computes three acoustic reflection coefficients as a function of incident angle and frequency. The program accounts for differences in path length, depth of source and receivers, water bottom slope, velocity gradient, and recorded travel time. USL Tech. Memo. Nos. 913-4-5 and 907-144-65. The later report also serves to document a supplemental program (USL No. 0429, in FORTRAN) for computing means and standard deviations of the three reflection coefficients. Program No. 0289.

R. Whittaker Naval Underwater Systems Center New London, CT 06320

Copy on file at NODC (listing, documentation)

Telephone (203) 442-0771, ext. 2316

Pattern Function Calculations

Language - FORTRAN IV Hardware - UNIVAC 1108

Computes transducer pattern functions needed in the sonar equations when estimating search performance of acoustic torpedoes. The desired parameters include the transmit and receive directivity indexes and the volume and boundary reverberation indexes. In a vehicle employed in circular search, the reverberation indexes are functions of turn rate and elapsed time in the ping cycle. The output is used by the "Sonar in Refractive Water" program. Report AP-PROG-C-7035, "Pattern Function Calculations," by Herbert S. Kaplan, Associated Aero Science Laboratories, Inc., Pasadena, for NUSC, Apr. 1967.

> Naval Undersea Center Pasadena Laboratory 3202 E. Foothill Blvd. Pasadena, CA 91107

Copy on file at NODC (above report)

Rayleigh-Morse Bottom Reflection Coefficients Language - FORTRAN V

Hardware - UNIVAC 1108

Computes Rayleigh-Morse bottom reflection coefficients, also phase changes of the reflected and transmitted acoustic wave. Author - J.C. Reeves.

Naval Undersea Center Pasadena Laboratory 3202 E. Foothill Blvd. Pasadena, CA 91107

Copy on file at NODC (listing, documentation)

Light and Sound Instruction D

Language - FORTRAN Hardware - IBM 7074

Computes the convergence zone parameters using the Vx method (equations of Donald Cole), by one-degree quadrangle, by month, and by season. OS No. 20112. Author - M.C. Church.

> Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373

Available from originator only

Telephone (301) 763-1449

Propagation Loss S1587

Language - FORTRAN V

Hardware - UNIVAC 1108/CalComp or Stromberg-Carlson 4060 plotter

Produces printed tables and plotted contours of single-frequency near-surface propagation loss. NUSC/NL Technical Memorandum No. 2070-356-70 and memo serial PA4-101, 2 May 1973.

> T.A. Garrett Naval Underwater Systems Center New London, CT 06320

Available from originator only

Telephone (203) 442-0771, ext. 2991

AMOS Propagation Loss S1797

Language - FORTRAN V Hardware - UNIVAC 1108/Stromberg-Carlson 4060 plotter

95

Computes and plots AMOS and modified AMOS propagation loss as a function of range, frequency, or depth. NUSC Technical Memorandum PA4-225-71 and memo serial PA4-101, 2 May 1973.

T.A. Garrett Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771, ext. 2991

SOUND VELOCITY

Sound Speed Computation Model

SOVEL

Language - FORTRAN

Hardware - CDC 3100/CDC 3200/CDC 1604/32K 14 bit words/1 tape unit

Computes sound speed from salinity-temperature-depth data. EPRF Program Note 10, "Program SOVEL," by T. Laevastu.

> Taivo Laevastu Environmental Prediction Research Facility Naval Postgraduate School Monterey, CA 93940

Available from originator only

Telephone (408) 646-2937

Sound Velocity

SONVEL

Language - FORTRAN IV-H Hardware - XDS Sigma 7

Subroutine computes the speed of sound in seawater from the temperature, salinity, and pressure, according to W.D. Wilson's formulas.

Mary Hunt

Available from originator only

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Sound Velocity: Wilson's Formula WLSND, SVELFS, VELPRS

Language - FORTRAN

Hardware - IBM 360-65/2218 bytes (object form)

Computes sound velocity using Wilson's equations. WLSND is used when pressure is computed from depth and FS is computed from salinity. SVELFS is used when pressure is computed from depth and FS is the entering argument; in this case, FS is usually computed in SIGMAT. VELPRS is used when pressure is not computed but is an entering argument; atmospheric pressure is included; successive computation starting at the ocean is not necessary here. Author - Robert Van Wie.

> Oceanographic Services Branch National Oceanographic Data Center

NOAA/EDS

Washington, DC 20235

Copy on file at NODC

Telephone (202) 634-7439

Depth Correction MTCOR

Language - FORTRAN IV

Hardware - XDS Sigma 7/1419 32 bit words

Calculates depth correction for sound velocity using Matthews' tables. Established coefficients are used to approximate Matthews' tables. The Matthews' table number 1-52 must be specified.

Robert C. Groman

Available from originator only

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Sound Velocity

Language - FORTRAN

Hardware - UNIVAC 1108/6,100 36 bit words

Adjusts sound velocity values for marine sediments, as recovered from laboratory velocimeter,

to in situ conditions of temperature, pressure, and salinity. Wilson's formula for sound speed in water is used to apply corrections.

Joseph Kravitz U.S. Naval Oceanographic Office Washington, DC 20373 Copy on file at NODC (deck with documentation)

Telephone (202) 433-2490

Sonic Velocities through Solid Samples DSDP/SONHAM

Language - ALGOL

Hardware - Burroughs 6700/7K words

Computes sonic velocities through solid samples from technicians' data taken from a Hamilton frame device (Dr. Edwin R. Hamilton, Naval Undersea Center, San Diego, CA 92132), and interprets a key associated with each sample which defines its origin. Input: One card file for the velocity data and key, and another card file for interpreting the key. Output: Listing with option for punched cards; listing includes five superimposed histograms of velocities at different levels of refinement.

Peter B. Woodbury Deep Sea Drilling Project Box 1529 La Jolla, CA 92037

Available from originator only

Telephone (714) 452-3256

Light and Sound Instruction B

Language - FORTRAN Hardware - IBM 7074

Computes the harmonic mean sound velocity, travel time, and correction ratio at 100-fathom depth intervals by one-degree square. OS No. 20111. Author - M.C. Church.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

SOUND - RAY PATH

Continuous Gradient Ray Tracing System CONGRATS

Language - FORTAN V
Hardware - UNIVAC 1108/50K 36 bit words/Disk
drum with 250K words/2 tape
units/CalComp Plotter

Draws ray diagrams, computes eigenrays, and calculates propagation loss and reverberation. Uses ray tracing method in which sound speed is represented as a function of depth with a continuous gradient, and the ray equations can be integrated in closed form. Input: Sound speed profile, bottom profile, sonar and target geometry, frequency, beam patterns, pulse length (number of these required depends on output desired). Output: Ray diagrams, propagation loss vs. range, pulse shape at a point, reverberation vs. time. NUSL Report No. 1052, "CONGRATS I: Ray Plotting and Eigenray Generation" by H. Weinberg, Oct. 1969; NUSL Report No. 1069, "Continuous Gradient Ray Tracing System (CONGRATS) II: Eigenray Processing Programs," by J.S. Cohen and L.T. Einstein, Feb. 1970; NUSC Report No. 4071, "Continuous Gradient Ray Tracing System (CONGRATS) III: Boundary and Volume Reverberation," by J.S. Cohen and H. Weinberg, April 1971; and other reports.

Henry Weinberg or Jeffrey S. Cohen Naval Underwater Systems Center New London, CT 06320 Available from originator only
Telephone (203) 442-0771, ext. 2589 or 2989

Acoustic Performance and Evaluation - Digigraphics, APE-DIGI

Language - FORTRAN
Hardware - CDC 3300/64K/CDC 274 Digigraphics
console, controller, software

The model simulates and displays, on a real time basis, the acoustic propagation characteristics of any given ocean medium including ray paths, intensity loss vs. range curves, and isoloss contours. Includes provisions for transducer patterns, target characteristics, and certain receiving circuit characteristics. Input: Ocean profile (SUP, BT), operating frequency, db levels for iso-loss contours. Graphic and tabular output. The math model employed is a substantial extension of an ORL program and is based on the theory of ray-path acoustics as presented in "Physics of Sound in the Sea" and a work by Officer; also included are the works of Schulkin and Marsh for adsorption coefficients, Wilson for sound velocity calculations, and two Vitro Laboratory studies of Torpedo MK48 acoustic performance. NUSC TD 130, "Operation Procedures for Exercising the Acoustic Performance and Evaluation-Digigraphics Simulation Model (APE-DIGI)," July 1971.

Ronald P. Kasik Naval Underwater Systems Center Newport, RI 02840 Available from originator only Telephone (401) 841-3435

Ray Path SO434B

Language - FORTRAN
Hardware - UNIVAC 1108/30K/Ca1Comp Plotter

Produces plots of travel vs. range for D, SR, BR, SRB, BRS, SBSR, BSBR paths, grazing angles for first three bottom bounce paths. Estimates ray paths and travel times by approximating true profile with linear segmented profile. Input: Source, receiver configuration, velocity profile, and plot requirements.

Peter D. Herstein Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771, ext. 2305

Language - FORTRAN Hardware - IBM 7074

Determination of critical ratio of trigonometric functions of acoustic angles involved in connection with the convergence interval for a 3-layer model of the ocean. OS No. 53483. Author - C.M. Winger.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

GRASS Underwater Acoustics Prediction System Language - FORTRAN 63
Hardware - CDC 3800/Drum Scope 2.1 CalComp

DTSTOV	DTSTOV	7,679 48 bit words
CTOUR	VFC	20,832 48 bit words
VFC	CTOUR	27,452 48 bit words
PRFPLT	PRFPLT	11,622 48 bit words
SERPENT	SERPENT	36,784 48 bit words
RAPLOT	RAPLOT	12,118 48 bit words
LOSSPLOT	LOSSPLOT	19,543 48 bit words

DTSTOV converts salinity, temperature, and depth (STD) data to sound speed profiles, using Leroy's second equation (Eq. [7] in J. Acoust. Soc. Am. 46: 216-226, [1969]). Input: cards and data-identifying parameters. Output: Profile ranges, latitudes, longitudes, depths, temperatures, salinities, and sound speeds punched and/or printed. Pressures may be printed as an option.

VFC is used: To examine input bottom-topography and sound speed data for consistence and physical meaningfulness; to extend all input sound speed profiles to the ocean bottom; to perform earth curvature corrections; to determine derivatives of sound speed data. Two-dimensional sound speed field is modeled using a combination of cubic spline and linear interpolation schemes. Input: Bottom topography in the form of non-uniformly spaced range-depth pairs; sound speed profiles (possibly generated by DTSTOV); program control parameters and data identification numbers. Output: A magnetic tape (coefficient tape) containing corrected and extended sound speed profiles and their first and second derivatives and bottom topography; a printer listing and printer plots of input and output profiles.

CTOUR generates three-dimensional isometric and contour plots of the sound speed fields. The program interpolates value of sound speed at each point using a combination of cubic spline and linear interpolation schemes, then calls contouring and isometric plotting routines. Input: Magnetic (coefficient) tape generated by VFC; contour levels, control parameters, and grid specifications. Output: A CalComp contour and three-dimensional isometric plot of the sound speed field; a printer listing of contour levels and values of sound speed at grid intersections.

PRFPLT generates CalComp plots of sound speed profiles. The vertical gradients and curvatures corresponding to a profile are plotted on the same graph as its sound speeds. A cubic spline interpolation scheme is used. Input: Magnetic (coefficient) tape generated by VFC, program control and data identification numbers on cards. Output: CalComp plots showing input data points and effect of interpolation in depth.

SERPENT traces rays through a two-dimensional range and depth dependent sound speed field bounded by a flat surface and variable bottom topography; calculates random, coherent, and statistical intensities for multiple receivers at user-selected ranges and depths. An iterative ray tracing scheme is used based upon expansion of ray depth, range, and sine in terms of an increment of ray arc length. Iteration step size depends upon sound speed field in rays' vicinity. Input: Coefficient tape from VFC and cards containing source information, receiver information, surface information, output requests, parameters governing ray iteration, run identification information, and bottom loss data. Output: A magnetic tape containing ray statistics (optional), a magnetic tape containing transmission loss information (optional), a printer listing of ray information, transmission loss information, etc.

RAPLOT generates CalComp ray plots (ray depth vs. range from ray source). Input: The ray statistics plot generated by SERPENT, control parameters on cards which select the number of plots to be generated, the rays to be displayed on each plot, the plot size, scaling parameters, etc. Output: Labeled CalComp plots showing rays and bottom profile and a printer listing of input and control parameters.

LOSSPLOT generates CalComp plots of transmission loss vs. range. Calculated and experimental values of transmission loss may be displayed on the same plot. Input: Transmission loss tape generated by SERPENT; control parameters and graph titles on cards; experimental measurements or theoretical values of transmission loss on cards. Output: Labeled Calcomp plots of transmission loss vs. range. If requested, plots will display random, coherent, and statistical losses together with input experimental data or theoretical curves.

"GRASS: A Digital Computer Ray Tracing and Transmission Loss Prediction System, Vol. 1 - Over-all description," NRL Report 7621, Dec. 1973;"...Vol. 2 - User's Manual," NRL Report 7642, Dec. 1973.

John J. Cornyn, Jr.
Naval Research Laboratory
Code 5493C
Washington, DC 20375

Available from originator only

Telephone (202) 767-3585

Sonar in Refractive Water

Language - FORTRAN IV Hardware - UNIVAC 1108/30K words

Traces sound rays, computes reverberation, computes acquisition laminae (vertical plane), in a linear gradient or continuous gradient medium. Output: Tape to be used by program RAY SORT. NUC Technical Publication No. 164, "Digital Computer Programs for Analyzing Acoustic Search Performance in Refractive Waters," by Philip Marsh and A.B. Poynter, Dec. 1969, two volumes. NUC Programs 800000 and 800001. See also NEWFIT and Pattern Function Calculations, which prepare input for this program.

Naval Undersea Center Pasadena Laboratory 3202 E. Foothill Blvd. Pasadena, CA 91107 Available from NTIS, Order Nos. AD 863 777 and AD 863 778, \$6.00 each volume in paper, \$2.25 each volume in microfiche.

Sorts Sound Ray Data RAY SORT Language - FORTRAN IV
Hardware - UNIVAC 1108/31K (450 instructions)

Sorts certain sound ray data (from tape written by the "Sonar in Refractive Water" program) by depth, initial ray angle, and depth-intersection number. (See reference for above program)

Naval Undersea Center Pasadena Laboratory 3202 E. Foothill Blvd. Pasadena, CA 91107 Available from NTIS: See "Sonar in Refractive Water."

Acoustic Ray Tracing

Language - FORTRAN II Hardware - IBM 7090

١

Calculates underwater sound propagation. Program requires input which describes the source, the field, the surface, and the bottom. Output is a report on magnetic tape which gives ray path, slope, curvature, and length. Also given are reflection and extrema statistics, travel time, wave front curvature, and intensity. Technical Report No. 1470764.

Trident/ASW Library Arthur D. Little, Inc. 35 Acorn Park Cambridge, MA 02140 Available from NTIS, Order No. AD 605 328, \$4.75 paper, \$2.25 microfiche.

Language - FORTRAN/Klerer-May USER language Hardware -

A series of 19 programs for the calculation of the acoustical field in long-range (several hundred to several thousand miles), low-frequency underwater sound propagation in the deep ocean. Involves the calculation of ray trajectories, and intensity calculations that are based on the mapping of ray densities into the far-acoustical field. Input from NODC data tapes or from Fleet Numerical Weather Central cards. Technical Report 150, "The Hudson Laboratories Ray Tracing Program," by H. Davis, H. Fleming, W.A. Hardy, R. Miningham, and S. Rosenbaum, June 1968. "Reference Manual," by M. Klerer and J. May, Hudson Laboratories, Revised July 1965; manual reprinted in above report.

The Hudson Laboratories of Columbia University 145 Palisade Street Dobbs Ferry, NY 10522 Available from NTIS: Order No. AD 678 759, \$10.00 paper, \$2.25 microfiche.

RAYTRACE

Language - FORTRAN IV Hardware - XDS Sigma 7/CalComp plotter

RAYTRACE is a straightforward, easy-to-use acoustic ray tracing program which produces a plot and a listing. The user specifies a single-valued velocity profile, source depth, maximum range, a range increment at which points are computed and the length of the plot axes in inches. All axis scaling and labeling is done automatically. The discrete velocity profile supplied is smoothed by linear interpolation. Rays are constructed as arcs of circles between profile depths. At surface and bottom rays are reflected according to the equal angle law. Any number of rays with different initial angles measured from the horizontal may be plotted. In addition to the plot output, RAYTRACE produces the following printed output for each ray at integral multiples of the specified range increment: (1) range; (2) depth of ray at that range; (3) angle of the tangent to the ray at that range measured from the horizontal; (4) total travel time from the source to that range along the ray; (5) total distance from the source to that range along the ray path. Whenever a vertex occurs on a ray, the range is set to that of the vertex, an output point is computed, and incrementing of output range continues from that of the vertex. Originally written by C. Olmstead, the program has been modified by Bergstrom, Fink, M. Jones, and R.C. Spindel.

Woods Hole Oceanographic Institu- Copy on file at NODC (listing, documentation) tion
Woods Hole, MA 02543

NAVIGATION AND CHARTING

Plots Maps, Grids, Tracks MAP

Language - FORTRAN IV
Hardware - IBM 360-65/CalComp, Houston Omnigraphic, or Gerber plotter/2 tape
units

Generates a plot tape to draw a map according to the user's specifications of latitude and longitude, projection, kind of grid, and size of map. Projection options: Mercator, Miller, square, cylindrical stereographic, Lambert equal-area cylindrical, sinusoidal equal-area, flat-polar sinusoidal equal-area, Mollweide homolographic, and Lambert Conic Conformal. Grid lines and coastal lines are drawn at the user's option; if coastal lines are plotted, a land mass data tape is needed. There is an entry which returns (x, y) plotter coordinates for latitude and longitude of a point, enabling the user to plot station positions, ship's track, etc.

Ruth McMath Department of Oceanography Texas A&M University College Station, TX 77843 Available from originator only

Telephone (713) 845-7432

Astronomic Position, Azimuth Method

Language - FORTRAN IV (H or G) Hardware - IBM 360-65/38K bytes

Calculates the latitude and longitude of an astronomic observation station, given measured horizontal angles between stars and fixed mark along with observation times. A set of observation equations is solved by the method of least squares to obtain corrections to assumed values of latitude, longitude, and the azimuth of the reference mark, as well as probable errors for these three quantities. The adjustment is iterated five times or until the corrections become less than 0.005 seconds, either of which causes a program halt. Output: A table of input information and a record of the process of refinement for each set of station data read in. A previous version of this program was written in ALGOL for the Burroughs 220, in single precision. Author - Spencer Roedder.

Computer Center Division U.S. Geological Survey National Center Reston, VA 22092

Copy on file at NODC (deck, documentation)

Telephone (703) 860-7106

Satellite Rise and Set Times ALERT, ASORT

Language - FORTRAN IV
Hardware - IBM 1130/5836 words (ALERT), 12040
words (ASORT)

Calculates the rise and set times and time of closest approach of satellites. Output: Listing of ALERT information and punched cards for next program, ASORT sorts the output of rise times of satellites from program ALERT into chronological order. A listing is printed on the IBM 1132. FRB Manuscript Report No. 1071, by C.A. Collins, R.L.K. Tripe, and S.K. Wong, Dec. 1969.

Pacific Biological Station Fisheries Research Board of Canada P. O. Box 100 Nanaimo, B. C. V9R 5K6 Copy on file at NODC (listing, documentation)

Satellite Navigation

Language - FORTRAN/Assembler Hardware - IBM 1800

A set of programs for various aspects of sattellite navigation. The programs fall naturally into two sections: those involved in the on-line reduction of data from the satellite, and those involved in the analysis, both on-line and off-line. NIO Report N. 20, Aug. 1969.

National Institute of Oceanography Wormley, Godalming, Surrey, England Copy on file at NODC (listing, documentation)

Loran/Decca Coordinates Calculation HNAV

Language - FORTRAN IV Hardware - IBM 1800

Given a Decca, Loran-A, or Loran-C fix, calculates the latitude and longitude. The method for a hyperbolic system with separate master is used for all cases. The constants for the hyperboloids are calculated in meters for both Loran and Decca, thus allowing a fix to be calculated if one Loran reading and one Decca reading are known. NIO Program No. 165. Uses SDANO and other subroutines. Author - M. Fasham.

National Institute of Oceanography Copy on file at NODC (listing, documentation) Wormley, Godalming, Surrey, England

Loran/Decca File Initialization

Language - FORTRAN IV Hardware - IBM 1800

Given input data on a master-slave pair, HNV1 calculates certain geodetic values and stores them on a tape file for later use by program HNAV. NIO Program No. 164. Author - M. Fasham.

National Institute of Oceanography Copy on file at NODC (listing, documentation) Wormley, Godalming, Surrey, England

Geodetic Distance and Azimuth SDANO

Language - FORTRAN IV Hardware - IBM 1800

Given the geographical coordinates of two points, this subroutine calculates the geodetic distance and azimuths between them. Based on the method of E.S. Sodano for a non-iterative solution of the inverse and direct geodetic problems. NIO Program No. 46. Author - M. Fasham.

National Institute of Oceanography Copy on file at NODC (listing, documentation) Wormley, Godalming, Surrey, England

General Map Projection

Language - MAD Hardware - IBM 7090/CalComp 763 plotter

Conversion or generation of latitude and longitude values to map projection coordinates. Includes all commonly employed projections of sphere. Oblique cases may be automatically obtained. Author - W.R. Tobler.

Department of Geography University of Michigan Ann Arbor, MI 48104 Copy on file at NODC (listing, documentation)

١

Finite Map Projection Distortions

Language - MAD Hardware - IBM 7090

Programs and subroutines to estimate the errors introduced by the substitution of map projection coordinates for spherical coordinates. Statistical computations of finite distortion are related to Tissot's indicatrix as a general contribution to the analysis of map projections. Technical Report No. 3, "Geographical Coordinate Computations, Part II," by W.R. Tobler, Dec. 1964.

Department of Geography The University of Michigan Ann Arbor, MI 48104 Copy on file at NODC (above report)

Plots Mercator Grid

Language - FORTRAN

CHART

Hardware - IBM 1800/16K words/Plotter

Produces Mercator grid on 30-inch drum or flatbed plotter, with various scale and tick mark options. Input: Card defining upper right coordinate of chart.

Michael Moore

Available from originator only

Scripps Institution of Oceanography

P.O. Box 1529

La Jolla, CA 92037

Telephone (714) 452-4194

Navigational Satellite Passes

ALRTX

Language - FORTRAN

Hardware - IBM 1800/16K words

Given satellite orbital parameters and station description cards, produces listing of satellite passes to occur for a given area and time.

Michael Moore

Available from originator only

Scripps Institution of Oceanography

P.O. Box 1529

La Jolla, CA 92037

Telephone (714) 452-4194

Loran or Omega Conversion GEPOS

Language - FORTRAN IV

Hardware - HP 2100S/Keyboard/Paper tape reader

Converts Loran-C or Omega information from line-of-position reading to geographic coordinates or geographic coordinates to line-of-position, using method described in Naval Oceanographic Office Informal Report NO. N-3-64 by A.C. Campbell. Input: Line-of-position readings, time, date, initialization parameters; designed to process EPSCO 4010 data logger paper tapes. Output: Listings of converted geographic coordinates and magnetic tape with same data in a format compatible with plotting program TMERC.

Chris Polloni

Available from originator only

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Cruise Track

TMERC

Language - FORTRAN IV

Hardware - HP 3100A/16K words/Keyboard/CalComp Plotter

.)

Draws a Mercator chart and cruise track from navigation data. Data format is fixed, compatible with program GEPOS. Input: Geographic coordinates and time (normally GMT).

Chris Polloni

Available from originator only

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Transformation of Spherical Coordinates

,

Language - FORTRAN IV

ROTGUT

Hardware - XDS Sigma 7/5,500 words

Performs various operations using transformation of spherical coordinates. Output: Rotation

about a pole, transformation to the new coordinate system, weighted or unweighted mean pole computation using Fisher's distribution, rotation for closest approach and pole of best small-circle fit.

Christine Wooding Woods Hole Oceanographic Institution

Available from originator only

Woods Hole Oceanographic Institut

Woods Hole, MA 02543

Telephone (617) 548-1400

Sum of Finite Rotations on a Sphere

Language - FORTRAN IV Hardware - XDS Sigma 7

SUMROT Hardware

Using coordinate transformation, calculates the sum of finite rotations on a sphere. Requires the latitude and longitude of the pole of rotation, and amount of rotation for each set. Output: Listing of the input rotations plus the resultant rotation and its tensor.

Christine Wooding

Available from originator only

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Loran Fix

Language - FORTRAN

Hardware - IBM 1800/16K words

Produces position fix from station position and reading pairs cards.

Michael Moore

Available from originator only

Scripps Institution of Oceanography

P.O. Box 1529

La Jolla, CA 92037

Telephone (714) 452-4194

Earth Spherical Subroutines ESTCH, ESTC2, ESTPL

Language - FORTRAN Hardware - IBM 1800

ESTCH converts earth spherical to plotter coordinates. Input: Decimal latitude and longitude. Output: Chart position for a call FPLOT (I, X, Y). ESTC2 converts earth spherical to plotter coordinates with inside check. Input and output: Same as ESTCH. ESTPL converts earth spherical to polar coordinates; not valid for over 200 miles, or over the poles. Input: Starting latitude and longitude, end latitude and longitude. Output: Distance (miles), angle (degrees) relative to true North (decimal units).

Michael Moore

Available from originator only

Scripps Institution of Oceanography

P.O. Box 1529

La Jolla, CA 92037

Telephone (714) 452-4194

Plan Course and Schedule CRUIS and Subroutines

Language - FORTRAN

Hardware - IBM 1800/16K words

CRUIS is used to plan steaming and station time and fuel consumption. Subroutines: SAILB calculates the distance between two points by either great-circle sailing or Mercator sailing, whichever makes the most sense. SAILG calculates great-circle distance and courses: SAILM calculates rhumbline (Mercator) course and distance.

Michael Moore

Available from originator only

Scripps Institution of Oceanography

P.O. Box 1529

La Jolla, CA 92037

Telephone (714) 452-4194

Degree Conversions DEGFR, DEMI

Language - FORTRAN Hardware - IBM 1800

DEGFR converts integer degrees and real minutes to real degrees. DEMI converts decimal degrees to integer degrees and decimal minutes.

Michael Moore

Available from originator only

Scripps Institution of Oceanography

P.O. Box 1529

La Jolla, CA 92037

Telephone (714) 452-4194

Mercator Degrees

DMRCT

Language - FORTRAN

Hardware - IBM 1800

From latitude in degrees, gives Mercator projected latitude in degrees. Expansion (continued fraction) \pm 77 degrees.

Michael Moore

Available from originator only

Scripps Institution of Oceanograhy

P.O. Box 1529

La Jolla, CA 92037

Telephone (714) 452-4194

Magnetic Field Components

MAGFI

Language - FORTRAN Hardware - IBM 1800

atitude and east longitude. Input:

Converts latitude (N+), Longitude (E+) to colatitude and east longitude. Input: Geoid latitude, longitude, date (years and decimals of a year). Output: Magnetic field (gammas), north component and east component of magnetic field, vertical component of magnetic field.

Michael Moore

Scripps Institution of Oceanography

P.O. Box 1529

La Jolla, CA 92037

Available from originator only

Telephone (714) 452-4194

Annotated Track on Stereographic Projection

ANNOT

Language - FORTRAN

Hardware - CDC 3600/3800/CalComp Plotter

Plots an annotated track (bathymetry or magnetics data) along a track (navigation) on a stereographic projection.

James V. Massingill

Environmental Sciences Section

Naval Research Laboratory

Washington, DC 20375

Available from originator only

Telephone (202) 767-2024

Annotates Chart

CORBT

Language - HP FORTRAN IV under RTE

Hardware - HP 2100S/15K words

Reads position and bathymetry information from a disk file and annotates the depth on a Mercator chart at the position given. This is a revision of the bathymetry processing section of program OCEANO written by the NRL Propagation Branch.

Robert A. O'Brien, Jr.

Available from originator only

Shipboard Computing Group, Code 8003

Naval Research Laboratory

Washington, DC 20375

Telephone (202) 767-2387

Bathymetric or Magnetics Chart PROFL

Language - HP FORTRAN IV under RTE Hardware - HP 2100S/10K words

Plots bathymetric or magnetic data as a function of distance along track or distance on a Mercator chart. The data file (disk) is read, and the track length or chart distance is calculated. The dependent variable is then plotted against this value.

Robert A. O'Brien, Jr. Available from originator only Shipboard Computing Group, Code 8003 Naval Research Laboratory Washington, DC 20375 Telephone (202) 767-2387

Mercator Chart Digitization ANTRK

Language - HP FORTRAN under RTE Hardware - HP 2100S/8K locations/Disk/ . Summagraphic Digitizing Tablet

The operator digitizes the Mercator chart position, which the program converts to latitude and longitude; the annotated data value is then entered, and position and value are written on the disk. Input: Information to define chart and the output of a digitizing tablet.

Robert A. O'Brien, Jr. Available from originator only Shipboard Computing Group, Code 8003
Naval Research Laboratory
Washington, DC 20375 Telephone (202) 767-2387

Bathymetric Chart Digitization DGBTH

Language - HP FORTRAN IV under RTE Hardware - HP 2100S/7200 locations/Disk/ Summagraphics digitizing tablet

Produces a disk file containing the digitized bathymetry values as a function of time; also messages to the operator. The program has automatic procedures for redefining the origin when the chart is shifted and when the recording instrument changes phase. Input: Control information necessary to define a coordinate axis and values from a digitizing tablet.

Robert A. O'Brien, Jr. Available from originator only Shipboard Computing Group, Code 8003
Naval Research Laboratory
Washington, DC 20375 Telephone (202) 767-2387

Plots on Stereographic Chart ANNOT

Language - HP FORTRAN IV under RTE Hardware - HP 2100S

Reads a disk file containing bathymetry and position, then annotates the depth information on a stereographic projection chart at the position given. Modification of Woods Hole program.

Robert A. O'Brien, Jr. Available from originator only Shipboard Computing Group, Code 8003
Naval Research Laboratory
Washington, DC 20375 Telephone (202) 767-2387

Plots Navigation Data OCEAN

Language - HP FORTRAN IV under RTE Hardware - HP 2100S/15K background words

Reads disk file containing navigation data and plots positions on Mercator chart. This is a revision of the navigation processing in program OCEANO written by the NRL Propagation Branch.

Robert A. O'Brien, Jr. Available from originator only Shipboard Computing Group, Code 8003 Naval Research Laboratory Washington, DC 20375

Telephone (202) 767-2387

Long Base Line Acoustic Tracking

Language - HP FORTRAN IV under RTE

Hardware - HP 2100S

Real-time local navigation using a bottom distributed acoustic transponder system. Will navigate the ship and a towed body. Input: Real-time data from the transponders giving ranges, depth of towed body; also requires a sound speed profile and location of the transponders. Output: Position of ship and/or towed body; information is logged on magnetic tape.

> J. Dean Clamons Available from originator only Shipboard Computing Group, Code 8003 Naval Research Laboratory Washington, DC 20375 Telephone (202) 767-2024

FAA Plot

Language - FORTRAN

Hardware - UNIVAC 1108/Concord Digital Plotter

Accepts three card images and a supplied set of FAA data cards as input. The output is a magnetic tape to drive the E-51, E-103, E-108 Concord Digital Plotters, using the echelon mode. The end product is a film positive with a plus symbol for the position of the FAA plots. The Mercator, transverse Mercator, and Lambert conic conformal projection with two standard parallels are the three projections which can be used to plot program outputs. O.S. No. 65652. Authors - Ronald M. Bolton and J. Parrinello.

> Automated Cartography Office, Defense Mapping Agency Hydrographic Center Washington, DC 20390

Available from originator only

Distance and Azimuth CTRAZD

Language - FORTRAN Hardware - UNIVAC 1108

Finds the distance and azimuth between two points on the earth's surface when the earth is assumed to be a sphere. If either pole is used for the center point, the angle given is with respect to grid north. By use of trigonometric identities and absolute value functions, this program avoids many of the computational problems usually found in distance computations. O.S. No. 55690. Author - Barry Turrett.

> Automated Cartography Office, Code NA Defense Mapping Agency Hydrographic Center Washington, DC 20390

Available from originator only

Parametric Map

Language - FORTRAN II Hardware - UNIVAC 1108

Generates any hyperbolic navigation system by using parametric equations. Generates plotting coordinates for loran-A, loran-C, Omega, and Decca charts. Will process all lattice lines that fall within a specified geographic area. Can be displayed on any of the following map projections: Mercator, transverse Mercator, Lambert conformal conic, oblique Mercator, polyconic. O.S. No. 53012. Authors - R.A. Bolton, R.M. Bolton.

Automated Cartography Office, Code Available from originator only NA

Defense Mapping Agency
Hydrographic Center
Washington, DC 20390

Loran to Geographic and Geographic to Loran Conversion Language - FORTRAN V

Hardware - UNIVAC 1108/15K words

Computes a geographic fix, given two loran readings, or computes the time difference reading at a given point for any two specified loran pairs. Uses Sodano inverse method. Informal Manuscript Report IMR No. N-3-64.

Kay Fox Navigational Science Division Defense Mapping Agency Hydrographic Center Washington, DC 20390 Available from originator only

Telephone (301) 763-1184

Loran Coordinate Computation

Language - FORTRAN V

Hardware - UNIVAC 1108/34K words

Computes charting coordinates along lines of latitude or longitude for loran hyperbolas at specified intervals. Uses Lambert's method of computing the geodesic and involves convergence by iteration. Informal Manuscript Report IMR No. N-1-64.

Kay Fox Navigational Science Division Defense Mapping Agency Hydrographic Center Washington, DC 20390 Available from originator only

Telephone (301) 763-1184

Loran Skywave Correction

Language - FORTRAN
Hardware - /15K words

Computes the loran-A or loran-C skywave corrections over a specified area. Uses Sodano inverse method. Input: Station positions, spheroid parameters, propagation velocity, area of coverage. Output: For Loran A, the nighttime skywave corrections from master, from slave, and from both; for Loran C, the daytime corrections as well.

Kay Fox Navigational Science Division Defense Mapping Agency Hydrographic Center Washington, DC 20390 Available from originator only

Telephone (301) 763-1184

Individual Point Generator for Map Projections

Language - FORTRAN II Hardware - IBM 7074

Converts geographic positions to discrete points in rectangular coordinates on the following projections: Mercator, transverse Mercator, gnomonic, polar stereographic, azimuthal equidistant, Lambert conformal conic (with one or two standard parallels), Lambert azimuthal equal area polar, Lambert equal area cylindrical, Miller, Albers equal-area conic, rectified skew orthomorphic, and oblique Mercator. Cartographic data may be produced in either graphic or tabular form. OS No. 55646 main program (each of the 13 projection subroutines has its own open shop number). Authors - Ronald Bolton, Louis Rowen, Gregory Vega. Informal report IR No. 69-23.

"Computer Programs and Subroutines for Automated Cartography" by J. Parrinello, March 1969.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

Individual Point Generator for Distance and Azimuth Computations

Language - FORTRAN II Hardware - IBM 7074

Uses the geodetic latitude and longitude of two points to compute the distance and azimuth from one point to the other. Results will be in tabular form with the distance in meters and the azimuth and back azimuth in degrees, minutes, and seconds. OS No. 65616. Author - R.M. Bolton.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

Geodetic Datum Conversion

Language - FORTRAN Hardware - IBM 7074

Transforms geodetic coordinates from one datum to another by utilizing a given shift (in terms of rectangular space coordinates) between the origins of two datums and applying this shift, together with differences in the spheroidal parameters, in formulas derived for this purpose. OS No. 55305. Author - Robert M. Willems.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

Geodetic Datum Reduction

Language - FORTRAN Hardware - IBM 7074

Reduces geodetic positions from one geodetic datum to another by use of the Vening Meinesz equations. The preferred datums involved are European datum, North American datum, and Tokyo datum. OS No. 55301. Author - D.J. Findlay.

Data Systems Office
U.S. Naval Oceanographic Office
Washington, DC 20373

Available from originator only

Telephone (301) 763-1449

Geodetic Position Computation and Plot

Language - FORTRAN Hardware - IBM 7074

Computes geodetic positions at desired intervals along incremental or miscellaneous azimuths. Option to plot or list. Plot uses the LAMB subroutine with two standard parallels. OS No. 55321. Author - Merle L. Nelson. An informal report IR No. 69-35 lists this and additional programs and describes procedures for production of secondary phase correction charts and tables. These supplementary programs, written by Edwin Stephenson and Barbara Gray, are in 7074 Autocoder or FORTRAN.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Copy on file at NODC (Above report; includes listing)

Telephone (301) 763-1449

Astronomic Latitude

Language - FORTRAN Hardware - Programs for determination of first-order astronomic latitude by the Sterneck method and also by the method of "Polaris and South Star"; subroutines for the Baldini, the Garfinkel, and the U.S. Coast and Geodetic Survey (now National Ocean Survey) refraction models. Informal report IR No. 68-21, "Investigations in Determining Astronomic Latitudes and The Computer Programs," by Larry Borquin, April 1968.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Copy on file at NODC (Above report, includes listing)
Telephone (301) 763-1449

Sounding Plot

Language - FORTRAN

Hardware - CDC 3100/IBM 7074/CalComp plotter

Accepts lorac, loran, or Raydist lane values, plots ship's track and soundings in UTM mode. OS No. 58419. Author - G.R. Bills.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

Single Integration

Language - FORTRAN Hardware - IBM 7074

Equally spaced time series data are integrated once using Tick's method. The data must be sampled at a rate of at least twice the Nyquist frequency. Informal report IM No. 66-36. OS No. 66-36. Author - E.B. Ross.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

Sodano Inverse

Language - FORTRAN Hardware - CDC 3100

Computes the normal section length and the forward and reverse azimuths of the geodesic between two points for which the geographic coordinates are known. This computation is useful in determining azimuth and distance between triangulation stations for which geographic positions have been determined but which are not connected by direct observation. OS No. 4326. Authors — Andrew Campbell; modified by C.E. Pierce.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Copy on file at NODC (Deck, documentation)

Telephone (301) 763-1449

Adjusts a State Plane Coordinate Traverse

Language - FORTRAN IV

Hardware - IBM 360-30/IBM 2311 disk/65K bytes

Computes a plane-coordinate traverse adjustment using condition equations and the method of least squares. The normal equations are solved using the Cholesky method. The program will adjust a network with as many as 250 stations, 600 observed directions, 250 measured distances, and 99 condition equations. It is limited to either a Lamber or traverse Mercator projection. Corrections are supplied for the reduction of observed data to grid data and options are available for various types of azimuth and position control. Documentation, "A Computer Program to Adjust a State Plane Coordinate Traverse by the Method of Least Squares" by Jeanne H. Holdahl and Dorothy E. Dubester, Sept. 1972.

Joseph F. Dracup National Geodetic Survey, NOAA/NOS 6001 Executive Boulevard Rockville, MD 20852 Copy on file at NODC (Above report; includes
 listing)

Telephone (301) 496-8650

Geodesy, Marine Surveying and Mapping, Nautical and Aeronautical Charting NOS SCIENTIFIC SUBROUTINE SYSTEM Language - FORTRAN IV Hardware - IBM 360-65

The purpose of this system is to make accessible the tools to accelerate and simplify solutions to various scientific problems encountered in the National Ocean Survey disciplines. The user may use the system in the development of his subroutine library. Several aspects were considered in the design and organization of the subroutines so that this purpose could be accomplished. The subroutines were designed so the user need be concerned only with the input and output parameters, not with the internal design of the subroutine. The reference to any subroutine by the problem program is straightforward, thus minimizing user effort. The subroutines are purely computational in function and do not contain any reference to input or output operation. The problem program must be designed so that it contains whatever input/output operations are needed for the solution of the problem. Some routines are in double precision mode to optimize accuracy of the computations; the problem program must be designed to meet this requirement. Although the subroutines are FORTRAN IV programs, there is no restriction on the symbolic programing language which may be used in the problem. The subroutines are uniformly documented and are accompanied by comment statements in sufficient detail to permit the user to gain familiarity with the techniques and method of use of the routine. Following are descriptions of individual subroutines:

ANGLE converts an angle expressed in seconds of arc to degrees, minutes, and seconds of arc. The angle, which may be positive or negative, is partitioned into its divisions by successive approximations for each of the divisions. A table is then searched for adjusting the decimal seconds to the desired precision to be used in the user's callable routine. (894 bytes)

ANLIS computes the long distance or geodetic distance and azimuths between two stations whose geodetic positions are known. Evaluation is based on equations of the Andoyer-Lambert method for solving the inverse position problem. This method is valid for distances up to 6,000 miles. (5612 bytes)

APCTN computes the state plane coordinates from geographic positions and the inverse for stations in zones 2 to 9 of the Alaska plane coordinate system. (6524 bytes)

APCWN computes the state plane coordinates from geographic positions and the inverse for stations in zone 1 of the Alaska plane coordinate system. (4388 bytes)

APOLY computes the American polyconic grid coordinates of a station from geographic positions and the inverse. (4320 bytes)

CGSPC computes the geodetic position (latitude, longitude) and azimuth of an observed station from a station of known geodetic position, with azimuth and distance to the observed station given. Evaluation is based on equations for the forward position computation and is valid for distances up to 600 miles. (2606 bytes)

CUBIC approximates a third-order curve by interpolating coordinates between given points. The evaluation is based on a method which expresses a cubic curve by using two parametric equations and then choosing values for the parameters in the two equations. (1926 bytes)

EXCES computes the spherical excess of a spherical triangle as determined from two angles and a side opposite one of them. The method is valid for triangles whose sides are less than 100 miles in length. (884 bytes)

GMLIC computes the geodetic distance and azimuths between two stations whose geodetic positions are known. Evaluation is based on equations of the Gauss midlatitude method for solving the inverse position problem. This method is valid for distances up to 600 miles. (2452 bytes)

HIFIX computes the hyperbolic coordinates of a ship expressed in HIFIX phase differences from

geographic positions, and the inverse. Evaluation is based on Campbell's equations to determine the geographic position of ship from HIFIX phase differences. (5662 bytes)

LORAN computes the hyperbolic coordinates of ship expressed in loran time differences from geographic positions, and the inverse. The program is applicable to loran-A, loran-C, or a mixture of the two systems. Two configurations of fixed stations may be used. In the triad configuration, two pairs of fixed stations are used, each pair having one station, the master station, in common, and a slave station. In the tetrad configuration, two pairs of fixed stations are used, each pair having a separate master station and a slave station. Evaluation is based on Campbell's equations. (6444 bytes)

OMEGA computes the hyperbolic coordinates of a ship expressed in Omega lane values from geographic positions, and the inverse. Evaluation is based on a modification of Campbell's equations. (5708 bytes)

SODIN computes the geodetic distance and azimuths between two stations whose geodetic positions are known, using the Sodano method for solving the inverse position problem. This method is valid for distances up to 6000 miles. (4622 bytes)

SODPN computes the geodetic position (latitude, longitude) and azimuth of an observed station from a station of known geodetic position, with azimuth and distance to the observed station given. Evaluation is based on equations of the Sodano method for solving the direct position problem. This problem is valid for distances up to 6,000 miles. (4,986 miles)

TPFIX computes the geographic position, forward azimuth, back azimuth, and distance of an observing station using angles observed at that station to three fixed stations whose geographic positions are known. The computations include the effect of spherical excess. Evaluation is based on the method of resection to determine the position of an unknown station. (3178 bytes)

UTMCO computes the universal transverse Mercator (UTM) grid coordinates of a station from geographic positions, and the inverse. This routine is designed to work for UTM zones 1 to 60, zone width 6 degrees, in both the Northern and Southern Hemispheres, within the latitude band of 80 degrees and 30 minutes north to 80 degrees and 30 minutes south, and 5 degrees and 45 minutes plus or minus from the central meridian of the major UTM zone. (7,930 bytes)

Milton Stein
ADP Programing Branch
National Ocean Survey, NOAA
6001 Executive Boulevard
Rockville, MD 20852

Copy on file at NODC (User's Guide; includes listing)

Telephone (301) 496-8026

Computes Geographic Positions

Language - SPS Hardware - IBM 1620

Computes geographic positions, given starting position, azimuth, and length on any one of six spheroids. Three types of computations can be obtained: single positions, a loop, or a traverse. Control is by job card. Length input may be in meters, feet, statute or nautical miles, or electronic lanes. USGS Program No. 15.

ADP Programing Branch National Ocean Survey, NOAA 6001 Executive Boulevard Rockville, MD 20852 Copy on file at NODC (listing, documentation)

LORAN C (Version 2)

Language - SPS Hardware - IBM 1620/100K*

Computes tables giving the points of intersection of LORAN C hyperbolas with meridians and/or parallels of the earth spheroid. Microsecond values are computed at intervals varying from 1 1/4 minutes to 20 minutes for any or all of four possible pairs of stations. Program can also be used to compute microsecond values at grid intersections. *Can be modified for use on IBM 1620 of 60K capacity.

ADP Programing Branch
National Ocean Survey, NOAA
6001 Executive Boulevard
Rockville, MD 20852

Copy on file at NODC (listing, documentation)

Compute Great-Circle Path GCIRC Language - FORTRAN IV-G

Hardware - IBM 360-65/1200 bytes

Computes distance (nautical miles) and initial course (degrees) of a great-circle path between two locations. Requires subroutines COS, SIN, ARCOS. Author - Ralph Johnson.

Oceanographic Services Branch National Oceanographic Data Center NOAA/EDS Washington, DC 20235

Copy on file at NODC

Telephone (202) 634-7439

 ${\tt Map}$ Projections and Grids ${\tt MAP}$.

Language - FORTRAN IV

Hardware - IBM 360-40/CalComp 763 plotter

Provides a wide variety of map projections and grids to facilitate the display of geographical data. The subroutine has been written in as modular a form as possible to allow for ease of insertion or deletion of routines. Provides the following projections: Mercator, Miller, square, cylindrical stereographic, Lambert equal—area cylindrical, flat—polar equal—area sinusoidal, equal—area sinusoidal, Mollweide homolographic, polar stereographic, Lambert equal—area polar, Colligan's equal—area projection of the sphere, azimuthal equidistant, transversed sinusoidal, transversed Mollweide. Author — John O. Ward.

Oceanographic Services Branch National Oceanographic Data Center NOAA/EDS Copy on file at NODC (tape, including land mass data file, and documentation)

ceanographic Data Center data file, and documentation

Washington, DC 20235 Telephone (202) 634-7439

GRAPHIC DISPLAY

Vertical Bar Graphs

Language - MASTER FORTRAN
Hardware - CDC 3300/34 17K words/CalComp
Plotter

Reads and edits bar graph parameters and data; calls the CalComp software which generates a plot tape. The CalComp Plotter draws the graphs as vertical bars for any set of data which has less than 101 items. The program uses numeric data and bar graph descriptive data as input. Major parameter categories are X access, Y access, titles, groups, and bar labels. File output is produced on CalComp continuous line plotter which draws individual bars; bars may have labels and may be shaded; there are four different types of shading.

James C. Cheap
Department of Water Resources
Computer Systems Division
1416 Ninth Street
Sacramento, CA 95814

Available from originator only

X-Y Plots MUDPAK Language - FORTRAN Hardware - CDC 3600/24K words/CalComp Plotter

Generates plots of several dependent (y) variables vs. a common independent (x) variable. Numerous user options control type of plot, titling, etc. Exhaustively plots all data from files, one plot per data set (data sets defined by change in key field value). Input: From 1 to 10 card or tape files, comprising 15 dependent variables, file definition cards, plot axis cards, title cards. Output: 11-inch or 30-inch CalComp plots (uses standard CCPLOT routine) and diagnostic listing.

Peter B. Woodbury Deep Sea Drilling Project Box 1529 La Jolla, CA 92037 Available from originator only

Telephone (714) 452-3526

Plotting Program PROFL

Language - FORTRAN IV Computer - CDC 3600

Plots data values against depth or other parameters.

David Wirth
Oceanic Research Division
Scripps Institution of Oceanography
P.O. Box 109
La Jolla, CA 92037

Available from originator only

Dendrograph

Language - FORTRAN, ASSEMBLER
Hardware - IBM 360 or 370/45K for 360/CalComp
Plotter and/or 132 character line
printer

Draws a two-dimensional diagram depicting the mutual relationships among a group of objects whose pairwise similarities are given. Input: A distance or correlation type matrix. Output: Printer and/or CalComp plot of the dendrograph. This program is a modification of a program by McCammon and Wenninger in Computer Contribution 48, Kansas Geological Survey. The changes are dynamic storage allocation and printer plots. The size of the input matrix is limited by the amount of core available; core is dynamically allocated at execution time.

Dennis T. O. Kam Hawaii Institute of Geophysics University of Hawaii at Manoa 2525 Correa Road Honolulu, HI 96822 Available from originator only

Telephone (808) 948-8952

Beach and Nearshore Maps

Language - FORTRAN IV Hardware - IBM 1130/8K words

Topographic maps of the beach and nearshore area are computed and plotted based on nine profiles from a baseline across the beach. Profiles are spaced at 100-foot intervals along the beach with survey points at five-foot intervals along each profile. Linear interpolation is made parallel to the baseline between adjacent profiles. Numbers and symbols are printed to form the maps. Profiles for a series of days are used to print maps of erosion and deposition by subtracting elevations for each day from the elevations for the previous day. ONR Tech. Report No. 4, "Beach and Nearshore Dynamics in Eastern Lake Michigan," by Davis and Fox, 1971.

William T. Fox Williams College Department of Geology Williamstown, MA 01267

Available from originator only

Telephone (413) 597-221

X-Y Plots in a Flexible Format MEDSPLOT

Language - FORTRAN

Hardware - CDC CYBER 74/60K octal words/
CalComp or Zeta Plotter

General purpose program to produce x-y coordinate plots in a flexible format. Point and line plots are available in either a time-sharing (interactive) or batch mode. The prime objective of the program is to permit very flexible control over the plot size and labeling at run time through the use of control cards. Input: (1) Control cards with plot description, (2) any formatted BCD file with fixed length records containing one pair of x-y coordinates, on tape or disk. Output: x-y coordinate plot and summary listing. The x-y coordinates are transferred directly from data. User-controlled range checks and multiple plots can be obtained, based on the sort sequence of a control field in each data record. This field will be in addition to the data fields to be plotted. Can use either an off-line CalComp Plotter or an online Zeta Plotter connected with a telephone line.

D. Branch
Marine Environmental Data Service
580 Booth Street
Ottawa, Ont. KlA OH3

Available from originator only

Telephone (613) 995-2011

Plots Hydro Cast Data PLOG Language - FORTRAN IV Hardware - IBM 1130/IBM 1627 plotter

Plots the results of hydrographic casts in a format suitable for publication. Produces 8 1/2-by 10-inch plots of log (10) depth vs. temperature, salinity, and oxygen.

Pacific Biological Station Fisheries Research Board of Canada P. O. Box 100 Nanaimo, B. C. V9R 5K6 Copy on file at NODC (documented listing)

Plots STD Data STP01 Language - FORTRAN IV Hardware - IBM 1130/IBM 1627 plotter

Plots digitized STD data in a format suitable for publication. The plotter draws and labels axes and plots temperature and salinity vs. depth.

Pacific Biological Station Fisheries Research Board of Canada P. O. Box 100 Nanaimo, B. C. V9R 5K6

Copy on file at NODC (documented listing)

Plots Temperature-Salinity PSAL1

Language - FORTRAN Hardware - IBM 1130

Plots T-S and expanded T-S curves. Another program, PSAL3, plots oxygen, salinity, and temperature-oxygen curves. FRB Manuscript Report No. 1071, by C.A. Collins, R.L. Tripe, and S.K. Wong, Dec. 1969.

> Pacific Biological Station Fisheries Research Board of Canada P. O. Box 100 Nanaimo, B. C. V9R 5K6

Copy on file at NODC (PSAL1 only, documented listing)

Section Plotting

Language - FORTRAN

Hardware - CDC 3100/PDP-8/CalComp Plotter

The program uses the CDC 3100 plotting subroutines to generate data for the PDP-8 plotting program. The user may specify a legend (up to 480 characters), label sizes, scale factors, the parameter to be plotted, and the isopleths to be determined. The plotting is done on a Cal-Comp 31-inch plotter under control of the PDP-8. Cruise data is read from magnetic tape by the CDC 3100 in modified CODC (MEDS) format or Bedford Institute format. An iterative method is used in conjunction with an interpolation function to determine isopleth depths. The interpolation function is described in a Bedford Institute report, BIO 66-3 (unpublished manuscript) by R.F. Reiniger and C.K. Ross, Feb. 1966.

> Director. Bedford Institute of Oceanography P. O. Box 1006 Dartmouth, N. S. B2Y 4A2

Available from originator only

Horizontal Histograms

Language - FORTRAN IV-H Hardware - XDS Sigma 7

Produces horizontal bar histograms on a line printer for any variable on magnetic tape in a standard WHOI format. Format described in a technical report, Ref. No. 69-55, "A Nine Channel Digital Magnetic Tape for Storing Oceanographic Data," by John A. Maltais, July 1969.

> Richard E. Payne Woods Hole Oceanographic Institution Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-1400

Printer Plots LISPLO

Language - FORTRAN IV-H Hardware - XDS Sigma 7

Lists and plots the data stored on WHOI format magnetic tape. See HISTO format reference. Output is on the line printer. Three types of plot are possible: (1) Variable vs. time or sequence number, (2) angle and speed vs. time, and (3) two variables (one on a minus and one on a plus scale) vs. time.

> Richard E. Payne Woods Hole Oceanographic Institution

Available from originator only

Woods Hole, MA 02543

Telephone (617) 548-1400

Plot of Frequency Distribution THISTO

Language - FORTRAN IV-H Hardware - XDS Sigma 7

Produces a two-dimensional frequency distribution of samples averaged over chosen interval against time. Input: Control cards and data on 9-track tape. Output: A line printer plot of averaged compass, vane, direction, and speed against time.

> Richard E. Payne Woods Hole Oceanographic Institution Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-1500

Velocity Vector Averages VECTAV

Language - FORTRAN IV-H Hardware - XDS Sigma 7

Produces a 9-track tape in WHOI format of east and north velocity vector averages and their corresponding polar representations. (See HISTO format reference.)

Richard E. Payne

Available from originator only

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Progressive Vectors PROVEC

Language - FORTRAN IV-H

Hardware - XDS Sigma 7/PDP-5 driven CalComp

Plotter optional

Computes progressive vectors from direction and speed values. Input: Control cards and tape in WHOI format. See HISTO format reference. Output: Listing of progressive vectors and/or a tape to be used with a PDP-5 driven CalComp for a plot of the vectors.

> Richard E. Pavne Woods Hole Oceanographic Institution Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-1400

Plots Data Along Track TRACK

Language - FORTRAN IV

Hardware - XDS Sigma 7/2986 32 bit words*/ CalComp or Versatec plotter

Plots data in profile along a ship's track. Map is in Mercator projection. The ship's heading is used to determine the orientation of the data. Standard CalComp software is used. Input data can be in any WHOI format or in a user specified format and can be from any device, but typically from a nine-track magnetic tape; also input are run-time parameters to specify scales and other options. *Another version of the program exists for the Hewlett-Packard minicomputer and works in a 16K word environment.

> Robert C. Groman Woods Hole Oceanographic Institution Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-1400, ext. 469

Profile versus Time or Distance PROFILE

Language - FORTRAN IV

Hardware - XDS Sigma 7/4010 32 bit words*/ CalComp or Versatec plotter

Plots in profile versus time or cumulative distance, all WHOI standard formats or a user-supplied format. Uses standard CalComp software. Input: Data from any device and run-time parameters to specify scales and other options. Output: Plot tape for offline use and printed information about the run. *Another version of this program exists for the Hewlett-Packard minicomputer and works in a 16K word environment.

Robert C. Groman Woods Hole Oceanographic Institution Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-1400, ext. 469

Plots Navigation with Any Other Data Type

Language - FORTRAN IV

Hardware - Hewlett-Packard minicomputer/

16K 16 bit words/CalComp plotter

Merges and plots x-y navigation with another data type. For each data point a linearly interpolated position is calculated. Plots can be annotated x-y charts, data profiles along the ship's track, or profiles vs. time or distance. Input: x-y navigation data in meters or fathoms; a time series of data to be merged with the navigation; and input parameters specifying scales and options.

Robert C. Groman Woods Hole Oceanographic Institution Woods Hole, MA 02543

Available from originator only

Telephone (617) 548-1400, ext. 469

Line Printer Plots GRAPH2

Language - FORTRAN, COMPASS Hardware - CDC 3800/4112 octal (2122 decimal)

locations*

This subroutine is intended to be valuable for scientists who want a fast and economical method of producing plots of their data but do not require the high resolution (100 points per inch) of the CalComp plotter. Modified by Dianna L. Denton from a program written at the University of Wisconsin. NRL Memorandum report 2046 (NRL Computer Bulletin 12), Aug. 1969. (*excluding the common block (11031 octal - 4633 decimal) and system library routines).

Research Computation Center Naval Research Laboratory Washington, DC 20375 Copy on file at NODC (tape, above report)

Magnetic Signatures MAGPLOT

Language - FORTRAN

Hardware - CDC 3600/CDC 3800/706,768 words/Online plotter

Separates and characterizes the various components of magnetic noise in magnetometer records taken from a sensor towed at sea. Gives a printout of histogram data for each of three wavelength filters: N(amplitude) vs. amplitude; N (wavelength) vs. wavelength. Also produces plots of filtered magnetic fields as function of distance. Program is briefly described in NRL Formal Report No. 7760, "Geological and Geomagnetic Background Noise in Two Areas of the North Atlantic."

Perry B. Alers Naval Research Laboratory Washington, DC 20375 Available from originator only

Telephone (202) 767-2530

Sequential Plotting

Language - FORTRAN Hardware - IBM 360-65

Subroutines produce plots using a digital computer output printer. The consecutive x, y data points are plotted with symbols consisting of letters and numerals. Permits rapid plotting of either a single- or a multivalued curve when high resolution is not required. NELC Report 1613 by R.G. Rock, March 1969.

Naval Electronics Laboratory Center Copy on file at NODC (documented listing) San Diego, CA 92152

Machine Plotting on Mercator Projection

Language - FORTRAN 63

Hardware - CDC 1604/CalComp 165 plotter

Utilizes meridional parts to locate data points on Mercator-projection maps, using a sharedtime plotting routine. The continent outlines can also be plotted by straight-line segments. NUWC Report TP-89 by L.A. Smothers, Dec. 1968. Final version of program written by K.K. Starr.

Ocean Sciences Department
Naval Undersea Research and
Development Center
San Diego, CA 92132

Copy on file at NODC (above report)

Overlay Plotting OVLPLT

Language - FORTRAN

Hardware - UNIVAC 1108/12K-plotter compatible with Integrated Graphics System

Performs overlay plots on the FR-80 graphic system using the Integrated Graphics System. No knowledge of IGS required by user. Fitting of data into bounds of "good looking" graph.

Peter D. Herstein Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771, ext. 2305

Physical Data Plot FRAME

Language - FORTRAN

Hardware - CDC 3300

Using arrays of profile data and specification parameters, this subroutine prepares a tape for the UCC plotter to provide a profile plot of depth vs. temperature, conductivity, salinity, sigma-t, and sound speed.

K. Crocker
Naval Underwater Systems Center
Newport, RI 02840

Available from originator only

Telephone (401) 841-3307

Reformats Data, Plots Track Chart MASTRACK

Language - FORTRAN V

Hardware - UNIVAC 1108/Instructions 5K words/
Data 5K words/2K Plotter buffer/
3 tape units/CalComp Plotter

Decodes blocked BCD data tapes in NGSDC format into UNIVAC SDF format and plots user-scaled Mercator track charts annotated with any and all underway parameters. Author - Peter J. Topoly.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (202) 763-1449

Produce Contour Charts
GRIDIT, REGRIDIT, AUTOMATED CONTOUR

Language - FORTRAN

Hardware -

Three programs which enable the user to graphically produce a contour chart by the computer-plotter method. GRIDIT produces a digitized matrix from data points which have been screened for gross errors. REGRIDIT produces a digitized matrix from raw unchecked data points. AUTO-MATED CONTOUR constructs a contour chart from a digitized matrix. An example is given for use of the program in contouring the bathymetry of the ocean bottom. Informal manuscript report IM No. 67-4, "An Automated Procedure for Producing Contour Charts," by Roger T. Osborn, Feb. 1967.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Copy on file at NODC (Above report; includes listing)
Telephone (301) 763-1449

Profile Plots, Time Axis PROFL3

Language - FORTRAN IV
Hardware - IBM 360 - 67/110K bytes for 1500
values per profile/Plotter

Makes profile plots of up to three values along a time axis. Uses Benson-Lehrner plotter or easy conversion to CalComp. Input: Cards with specifications for profiles (scales, values, titles, symbols, etc.) and formats, and data cards with Julian day, hour, minute, and one to three values.

Graig McHendrie Office of Marine Geology U.S. Geological Survey 345 Middlefield Road Menlo Park, CA 94025 Available from originator only

Telephone (415) 323-8111, ext. 2174

Profile Plots, Distance Axis PFLDST

Language - FORTRAN IV Hardware - IBM 360-67/130K bytes for 1500 values per profile/plotter

Produces profile plots of up to three values along a cumulative distance axis. Uses Benson-Lehrner plotter or easy conversion to CalComp. Input: Cards with specifications for each profile (scale, values, symbols, title, etc.) and formats, and data cards with Julian day, hour, minute, latitude, longitude, and one to three values.

Graig McHendrie Office of Marine Geology U.S. Geological Survey 345 Middlefield Road Menlo Park, CA 94025 Available from originator only

Telephone (415) 323-8111, ext. 2174

Map Plots MAPPLT Language - FORTRAN IV Hardware - IBM 360-67/244K bytes for 7500 nav. or 6000 data points/Plotter

Makes map plots of either data values or navigation data on a Mercator, transverse Mercator, conic, or Lambert conformal projection. Maximum map size is 28 x 61 inches. Assumes equatorial radius of earth is 251,117,000 inches and that west longitude and south latitude are input as negative values. Uses Benson-Lehrner plotter or easy conversion to CalComp. Input: Eleven cards with title, formats, and map window specifications followed by data on either cards or tape. Navigation data: Julian day, hour, minute, latitude, longitude. Data values: minute (or sequence no.) value, latitude, longitude.

Graig McHendrie Office of Marine Geology U.S. Geological Survey 345 Middlefield Road Menlo Park, CA 94025 Available from originator only

Telephone (415) 323-8111, ext. 2174

Plots Scattergram SCTGM4 and SCTGM5

Language - FORTRAN IV Hardware - IBM 360-65

These subroutines plot a simple scattergram from a set of data pairs. The data are first adjusted to fit in a range of 1 to 100, then rounded, and the scattergram is generated by

subtracting the origin from each data point and then fixing, or truncating, the number to yield a set of subscript pairs. The location for each subscript pair in the black array is filled with the number of occurrences and finally a plot is produced. These routines ignore out of bound points.

> Paul Sabol Center for Experiment Design and Data Analysis, NOAA/EDS Washington, DC 20235

Available from originator only

Telephone (202) 634-7344

X-Y Plots EBTPLT

Language - FORTRAN IV Hardware - CDC 6600/FR80 Precision Microfilm Recorder

A generalized x-y plot package. Allows various manipulations of axes as well as special character plotting.

> Robert Dennis Center for Experiment Design and Data Analysis, NOAA/EDS Washington, DC 20235

Available from originator only

Telephone (202) 634-7340

Displays VHRR Satellite Data V5DMD

Language - FORTRAN Hardware - CDC 6600/54K words/Digital Muirhead Displayer/NESS displayer run by CDC 924

Displays VHRR data from the ingest tape on the Digital Muirhead Displayer (DMD) in 5000 mode (5000 picture elements per scan line; 5000 maximum scan lines per picture). The program uses a two spot running mean of 5,000 spots of a possible 6472 along each scan made by the VHRR instrument. It converts each averaged spot via lookup table to a display grayscale. The starting scan line, the number of scan lines to be processed, the starting spot, and the grayscale lookup table are controlled by data cards.

> John A. Pritchard National Environmental Satellite Service, NOAA Suitland, MD 20233

Available from originator only

Telephone (301) 763-8403

Microfilm Plots of VHRR Sattellite Data SVHRR4KM

Language - FORTRAN H Extended Hardware - IBM 360-195/FR-80 Precision Microfilm Recorder/256K 8 bit bytes

Displays the VHRR data from the VHRR ingest tape in the form of printed characters on 16mm microfilm in blocks of 128 characters by 48 characters. Each printed character will represent a square four kilometers on a side at the subsatellite point, is obtained by averaging four lines and six spots along each scan line of data from the VHRR ingest tape, and then is determined by a character lookup table. The program is capable of utilizing 3,840 digital spots of a possible 4842.

> John A. Pritchard National Environmental Satellite Service, NOAA Suitland, MD 20233

Available from originator only

Telephone (301) 763-8403

Vertically Analyzed Contours of Oceanographic Language - FORTRAN 63 Temperatures and Salinities, VACOTS

Hardware - CDC 3600/CalComp plotter/32K words

Provides a rapid and accurate means of constructing vertical cross sections of sea temperatures and salinities. Although this program has been designated to use STD data recorded on magnetic tape, other versions are being used to contour biological, chemical, and other physical oceanographic data. Each vertical section is divided into two parts: the upper section for the contours from the surface to 300 m, and the lower section from 300 m to 1,000 m. Running time: To analyze and plot contours at intervals of 1 degree C for temperature and 0.1 parts per thousand for salinity from the surface to 1,000 m for 50 stations requires four minutes of computer time on the CDC 3600 and 25 minutes on the CalComp 30-inch plotter. Author - Forrest Miller.

Southwest Fisheries Center Copy on file at NODC (deck, documentation)
National Marine Fisheries Service, NOAA
P.O. Box 271
La Jolla, CA 92037 Telephone (714) 453-2820

Oxygen, Phosphate, Density Plots

Language - FORTRAN IV Hardware - IBM 360-65/CalComp plotter/33K bytes

Plots oxygen vs. phosphate, oxygen vs. sigma-t, and phosphate vs. sigma-t (single or multiple station) for purposes of quality control and study of water types. Input: Hydrographic data in ICES format. Author - Marilynn Borkowski.

Southeast Fisheries Center Copy on file at NODC (documented listing)
National Marine Fisheries Service, NOAA
75 Virginia Beach Drive
Miami, FL 33149

General Mercator Plot

Language - FORTRAN IV Hardware - IBM 360-65/CalComp Plotter/42K bytes

Plots any variable on a Mercator projection; has option of writing in value or making a point plot, and of connecting the points with lines. Input: Any header cards in ICES format. Projection plot may be in any scale per degree, and may include a coastline (obtained from a digitized world tape layout). Author - Marilyn Borkowski.

Southeast Fisheries Center Copy on file at NODC documented listing)
National Marine Fisheries Service, NOAA
75 Virginia Beach Drive
Miami, FL 33149

Plotter Commands PLOT, DVR10 Language - Assembly language under RTE Hardware - HP 2100S

These subroutines are modifications of the HP subroutine PLOT and the RTE driver DVR10. Together they control a CalComp or CalComp compatible .01" or .0025" incremental step drum plotter with three-pen operation. Equipment type is identified through subchannel. Plot increments are calculated in double precision integer.

Robert A. O'Brien, Jr. Available from originator only Shipboard Computing Group, Code 8003
Naval Research Laboratory
Washington, DC 20375 Telephone (202) 767-2387

TIME AND SPECTRAL SERIES ANALYSIS

Spectral Analysis Subroutines

Language - FORTRAN

Hardware - UNIVAC 1108/30K

Given digital time and spectral series, produces autospectral autocorrelation plots and listings, and phase angle vs. frequency plots.

Peter D. Herstein

Available from originator only

Naval Underwater Systems Center New London, CT 06320

Telephone (203) 442-0771, ext. 2970

Scalar Time Series TEMPLT7

Language - FORTRAN IV

Hardware - CDC 6400 (SCOPE 3.4)/100K (octal)

10 character words/CalComp 936/905 Plotting System

Computes and plots statistics, histogram, time series, and spectrum for time series of any scalar quantity. Input: Scalar time series on tape in CDC 6400 binary format; maximum number of data points is 5236. Output: Listing and tape for off-line plotter. Perfect Daniel frequency window used to compute spectral estimates from FFT generated periodogram values.

James R. Holbrook
Pacific Marine Environmental
Laboratory, NOAA
3711 Fifteenth Avenue N.E.
Seattle, WA 98105

Available from originator only

Telephone (206) 442-0199

Time Series Plotting

Language - FORTRAN 32

Hardware - CDC 3100/PDP-8/CalComp Plotter

The program uses the CDC 3100 plotting subroutines to generate data for the PDP-8 plotting program. The user may specify a legend (up to 480 characters), label sizes, scale factors, the parameter to be plotted and the isopleths to be determined. The plotting is done on a CalComp 31 inch plotter under control of the PDP-8. Cruise data is read from magnetic tape by the CDC 3100 in Bedford Institute format. Time is plotted along the X axis (drum movement) and depth along the Z axis (pen movement). Stations are plotted to the nearest day. Author - D.J. Lawrence. June 1969.

Director
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Available from originator only

Telephone (902) 426-3584

Time Series Analysis Programs

Language - MS FORTRAN

Hardware - CDC 6400 or CDC 3150/Disk/3 tape

units/CalComp Plotter

A series of programs that edit digitized time series data, produce plots, probability distributions, perform fast Fourier transforms on data and convert Fourier coefficients into power and cross spectra. Input: Digitized magnetic tape output from program A TO D and data cards. Output: CalComp plots, printer plots, option dump of data tape, magnetic tape of Fourier coefficients, listing of spectra, disk file of spectra. Computer Note BI-C-74-2, May 1974.

F. W. Dobson
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Available from originator only

Telephone (902) 426-3584

Time Series - Analog to Digital A TO D

Language - MS FORTRAN

Hardware - CDC 3150/32 K words/1500 tracks on
scratch disk/2 tape units/Crown
CI822 tape recorder and Airpax
FPS24 discriminators for BIO
A-D converter

Digitizes analog time series data at fixed time intervals; removes means and trends and writes data on digital magnetic tape; processes data from sensors used in air-sea interaction studies. Input: Up to 12-channel magnetic tape read in through on-line A-D converter; control cards. Output: Summary listing and digital magnetic tape. Computer Note BI-C-74-1, Feb. 1974.

S. D. Smith
Bedford Institute of Oceanography
P. O. Box 1006
Dartmouth, N. S. B2Y 4A2

Available from originator only

Telephone (902) 426-3584

Time Series Routines ARAND SYSTEM

(Number in parentheses at end of each abstract is key to references at end of series.)

Language - FORTRAN/COMPASS (assembly)
Hardware - CDC 3300/OS-3 time-sharing
operating system/Less than 32 K
4 character words/Graphics:
Tektronix 4002 or 4010 graphics
terminal, CalComp 1627 II drum incremental X-Y plotter. HewlettPackard 7200A graphics plotter

ACFFT computes the autocorrelation or autocovariance function of a single time series using a variation of the convolution property of the discrete Fourier transform in conjunction with a fast Fourier transform algorithm. (2, 4, 5)

ACORR computes the autocorrelation function of a time series for a given number of lags. (3)

ACRPLT is designed to plot estimated autocorrelation or partial autocorrelation functions; standard error designations are included. Provision is made for the inclusion of confidence intervals that correspond to hypotheses that all theoretical correlation values beyond a certain lag are zero. CalComp or Tektronix. (3, 6)

ALIGN aligns cross correlation or cross covariance values, shifting the estimates so that a specified lag becomes lag zero. It is intended for use prior to computing estimates of the squared coherence and phase spectra of two time series. (2, 7)

AMPHCO determines the amplitude, phase, and the squared coherence, given the spectral density functions, the cospectrum and the quadrature spectrum of two time series. (1, 7, 8)

ARMAP produces realizations or observed time series of an autoregressive, moving average, or mixed regressive-moving average process. The order of the autoregressive and/or moving average operator cannot exceed three; one realization is produced per call and there is no restriction on the length of the observed time series. (3, 6)

AUTO calculates values of the biased autocovariance function. (1, 9)

AUTOPLT is designed to plot autocorrelation or autocovariance functions on the CalComp 1627 II plotter. The routine scales the values, determining the range of the values to be plotted on the Y-axis. (2)

AXISL is a plotting aid allowing for general purpose axis drawing and labeling. It is written in assembly language and uses elements of the COMPLOT drivers. (3)

CCFFT employs the convolution property of the discrete Fourier transform in conjunction with

the fast Fourier transform algorithm to compute the cross-correlation (covariance) function. (2, 4, 5)

CCORR computes the biased auto- and cross-correlation functions of two time series. (1)

COHPLT accepts squared-coherency spectrum values and plots coherency on a hyperbolic arctangent scale which allows a constant length confidence interval to be constructed. (2, 7)

COMPLOT is a set of subroutines intended to provide a basis for easily programing graphics applications. These subroutines expand relatively simple instructions specified by the programer to include all of the necessary details for the plotting device. COMPLOT was designed to be utilized in a time-sharing environment with any of the above plotting devices; also, provisions have been made for plotting on combinations of these devices. (3)

CONFID determines multiplicative factors used in constructing confidence intervals for meanlagged product spectral estimation. (1, 7)

CONFID1 determines the multiplicative factors necessary to construct confidence intervals for power spectral estimates found by averaging short modified periodograms, as in FOUSPC, FOUSPC1, FOUSPC2, and FFTPS. (3, 10)

CONMODE is a series of subprograms designed as aids to conversational programing with the following four objectives: (1) to allow the user to respond in as natural a way as possible within the limitations of the operating system available; (2) To make all responses entered by the user consistent in use; (3) To provide a complete set of input/output subprograms for conversational-mode use; (4) To allow ease in usage from a programing point of view, with fairly fast and efficient execution. (3)

COPH computes squared-coherence and phase estimates, given power spectral, cospectral, and quadrature spectrum estimates. The phase estimates can be in either degrees or radians. Similar to AMPHCO. (2)

COSTR computes the discrete cosine transform of an even function (array of values). Goertzel's method is used. (1)

CPEES is a conversational program used in modeling. CPEES picks up information output on file by the CUSID routine, asks the user a few questions, and then determines initial or final parameter estimates for the identified model. Calls USPE and USES, getting preliminary and final parameter estimates. (3, 6)

CPLT1 is a conversational calling program for the plotting routine PLTSPC, used to plot spectral estimates with confidence intervals and bandwidth. The program allows the user to plot as many data sets as he likes from the same or different files. (2)

CPLT2 is a conversational program to produce plots of frequency dependent data using routine PLTFRQ. The program allows the user to plot as many data sets as he likes from the same or different files. (2)

CROPLT is designed to plot the cross correlation (covariance) functions of two time series on the CalComp 1627 II plotter. The routine automatically scales the values, determining the range of values to be plotted on the Y-axis. (2)

CROSS computes the two cross covariance functions (biased) of two time series. (1, 9)

CUSID is the first of a series of three conversatinal programs that collectively perform model identification, parameter estimation (see CPEES), and forecasting (see CUSFO) for autoregressive integrated moving average models. This program corresponds to the identification phase in the modeling process, accepting time series data and computing the autocorrelation and partial correlation functions of the series after seasonal and/or nonseasonal difference operators have been applied. The routine is designed for use at a Teletype or a Tektronix graphics terminal; selection of graphics output of the data and correlation functions on either the CalComp plotter or the graphics terminal is available. (3, 6, 11, 12)

CUSFO computes and plots forecasts from the original data and a fitted model. See CUSID. (3)

CZT computes z-transform values of a finite sequence of real data points using the chirp z-transform algorithm. Points at which transform values will be computed must lie on circular or spiral contours in the complex plane. The contour may begin at any point in the plane and the constant angular frequency spacing between points on this contour is arbitrary. A special contour of particular importance is the unit circle in which case a Fourier transform is computed. (2. 13. 14)

DATPLT is a general purpose plot routine for time series data. (3)

DEMOD1 estimates values of the energy spectrum of a time series using complex demodulates. The frequencies (in cycles per data interval) at which spectral estimates are to be computed are input in the form of an array, allowing one to consider isolated frequencies or a collection of related frequencies, such as an arithmetic progression. Only every Lth value of the complex demodulate at a particular frequency is computed and averaged to form the spectral estimate at that frequency, where L is specified by the user. (1, 15, 16)

DEMOD2 finds the complex demodulate at the given frequency, given a time series, an array of filter weights, a selection integer, and a single frequency. The values of the complex demodulate at the given frequency are returned either as real and imaginary parts of complex numbers or in terms of amplitudes and phases. As in DEMOD1, the calculations use the method of Goertzel for the evaluation of discrete Fourier transforms. (1, 15, 16)

DEMOD3 accepts output from DEMOD2 and calculates an energy spectrum estimate at a single frequency. (1, 15, 16)

DETREND removes a mean or linear trend from a time series, writing over the input array. (1)

DIFF12 computes first or second forward differences of a series. (1)

EUREKA finds either the solution to the matrix equation $R^*f = g$ where R is a Toeplitz matrix (i.e., a symmetric matrix with the elements along the diagonals equal) and f is a column vector, or the solution of the normal equations which arise in least-square filtering and prediction problems for single-channel time series. (1, 17, 18)

EXSMO computes a triple exponentially smoothed series. (1, 9)

FFIN, a free-form input routine, allows for the reading of numeric information in BCD that is relatively format free. FFIN returns a single value on each call, and operates by reading 160 characters (2 cards or 2 card images) and advancing a pointer through the buffer on each subsequent call until more information must be input or reading is complete. A companion routine, FFINI, operates exactly as FFIN except that the buffer is cleared and new information input on each call. Both routines set the EOF bit if an end of file is encountered. (3)

FFTCNV computes the convolution of a series with a weighting function using the fast Fourier transform algorithm. The program is designed for the convolution of long series with a relatively short weighting function. (2, 4, 5)

FFTPS uses a fast Fourier transform algorithm to compute spectral estimates by a method of time averaging over short, modified periodograms. (1, 7, 10)

FFTS computes the direct or inverse transform of real or complex data, using a power of two fast Fourier transform algorithm. (2)

FFTSPC finds a raw or modified periodogram for a sequence of real data points using a power of two fast Fourier transform algorithm, i.e., the absolute value squared of raw or Hanned Fourier coefficients are found and suitably scaled. This subroutine is intended for use with time series whose length is slightly smaller than or equal to a power of two. (3)

FILTER1 designs symmetrical, non-recursive digital filters. It is conversational in form and is intended for use at a Tektronix 4002 graphic terminal. Two design techniques are supported, corresponding to the subroutines GENER1 and FIVET. Outputs include an array of filter weights and the attained frequency response. (2)

FIVET designs non-recursive symmetrical digital filters. The design technique is known as the 5T's method and requires that the specifications be given for the desired frequency response

function, the maximum allowable deviation from the desired response, and the bandwidth of transitions in the attained response corresponding to discontinuities in the desired response. (2, 19)

FOLD performs polynomial multiplication or, equivalently, the complete transient convolution of two series. (1, 17)

FOURTR takes the Fourier transform of real data; many output options are available. (1, 20)

FOUSPC finds the Fourier transforms of segments of a time series. The segments must be of equal length, but may abut, overlap, or be in any order relative to the given time series. FOUSPC can be used in conjunction with SPEC to estimate power spectra by a method of time averaging over short, modified periodograms. Note that if one is not interested in examining the Fourier-like coefficients of each segment before passing on to spectral estimates, then FOUSPC1 or FOUSPC2 should be used. (1)

FOUSPC1 computes the power spectrum of a time series by a method of averaging over short, modified periodograms. (3, 7)

FOUSPC2 is similar to FOUSPC1, but accepts two time series, computing the cross spectral matrix at specified frequencies. (1)

FRESPON computes the frequency response of a filter. (1)

GAPH computes and plots estimated gain and phase functions of a time invariant linear system. The gain values are plotted on a logarithmic scale and both gain and phase plots include confidence interval constructions. Input includes smoothed power and cross spectra estimates. (3, 7)

GENER1 is a filter design program. It may also be used to generate weights of lag window or data window, although the routine WINDOW is specifically designed to perform this task and is therefore somewhat easier to use. (1, 26)

GENER2 generates an arithmetic progression. (1)

GENER3 designs a symmetrical low-pass filter given an array containing desired frequency responses at equally spaced frequencies from zero to one-half cycle per data interval. (1)

LOGPLT plots power spectral estimates on a base ten logarithmic scale, the output device being a CalComp 1627 II plotter. The subroutine automatically scales the estimates, determining the range of values to be plotted on the Y-axis. The estimates must have been computed at equally spaced frequencies. An 80% or 95% confidence interval (computed using routine CONFID) is also plotted. (2)

NOIZT tests a time series to determine if it can be considered a realization of a white noise process. The test is a frequency domain test involving the integrated spectrum of the series. The results are plotted with 80% and 95% confidence regions. (2, 7, 21)

PHAPLT plots the phase estimates with 95% confidence intervals on the CalComp 1627 II plotter. The phase estimates must have been computed at equally spaced frequencies and, in order to generate approximate confidence intervals, the associated squared-coherency estimates at these same frequencies must be given. (2, 7)

PLTFOR graphs an initial segment of time series data followed by a set of forecasts that include upper and lower probability limits as generated by CUSFO or USFO. (3)

PLTFRQ allows frequency dependent functions to be plotted versus any arithmetic progression of frequencies, using the CalComp 1627 II plotter. The routine scales the frequency values, determining the range of the values to be plotted on the Y-axis. (2)

PLTSPC is designed to plot power spectra on the CalComp 1627 II plotter. The routine scales the spectral estimates, automatically determining the range of values to be plotted on the y-axis. Also, the plotting of spectral window bandwidth and confidence intervals is possible. The bandwidth of the spectral window associated with any lag window the user may have used, is

computed by WINDOW and the multiplicative factors needed to determine confidence intervals can be found using the CONFID routines. (2)

POLRT computes the real and complex roots of a polynomial with real coefficients. (1, 9, 17)

POLYDV divides one polynomial by another or deconvolves one signal by another. (1, 17)

PROPLT produces a profile plot on either the Tektronix graphics terminals or the CalComp plotter or both, and is intended for use with the routine TIMSPEC which produces spectra from segments of a long record, the segments being equally spaced in time. This profile is not a true perspective view, as the frequency (horizontal) axis of each spectrum is of constant length and separated on the time (vertical) axis by a constant amount. (3)

PSQRT computes the coefficients of the square root of a power series or polynomial. (1, 17)

RANDM generates a (pseudo) random sample from one of four possible population distributions, with the size of the sample specified by the user. The population mean is fixed at zero; the variance or scale parameter is user definable. Provisions have been made for repeated calls to RANDM; that is, one can generate a number of independent random samples from the same or different populations. (3, 22)

RCTFFT computes the discrete Fourier transform of real data using the Cooley-Tukey fast Fourier transform algorithm. The number of data points must be a power of two. (1)

RESPON computes the square of the absolute values of the frequency response of a general filter. (1)

REVERS performs bit-reversing on an array of complex data points. REVERS is written in COMPASS and is used in programs employing the fast Fourier transform algorithm. (1)

RPLACE changes specified values of a time series. The indices of the values to be changed and the new values themselves are read in by RPLACE according to a format specified by the user.
(1)

RRVERS performs bit-reversing on an array of real data points; the subroutine is written in COMPASS and is used in FFTPS. (1)

SARIT produces a series by serial computations on one or two other series; there are seven different choices for the series to be produced. (1)

SERGEN generates a time series by adding random numbers or noise to a signal, in this case a trigonometric series. Inputs include amplitudes or coefficients of the trigonometric series, an array of random numbers, and a parameter specifying the desired signal level to noise level ratio. (1, 23)

SHAPE designs a filter which will shape a given series into a desired output series. (1, 17)

SINTR calculates the discrete sine transform of a series of data points. (1)

SMO calculates a smoothed or filtered series, given a time series, a selection integer, and a weighting function. (1, 9)

SPEC accepts output from FOUSPC, computing either the power spectrum of a single time series or the cross spectral matrix of two time series. In the latter case, FOUSPC must be called twice with different time series at each call, but with the same arithmetic progression of frequencies. (1)

SPECT1 is a conversational main program designed to estimate, output, and plot the autocorrelation and auto spectral functions of a single time series. It is intended for use at a teletypewriter. (2)

SPECT2, a conversational main program for use at a teletypewriter, computes power spectral, squared coherence, and phase estimates. The program allows the correlation functions of the two time series involved, the power spectral, squared coherency, and phase estimates to be

output on a combination of devices, including the Teletype, line printer, CalComp plotter and disk. (2, 7)

TAUTOPLT is designed to plot autocorrelation or autocovariance functions on a Tektronix 4002 graphics terminal; the routine scales the values, determines the range of the values to be plotted on the Y-axis. (2)

TCOHPLT, designed for use with a Tektronix graphics terminal, plots coherence estimates on a hyperbolic arctangent scale, allowing the construction of confidence intervals whose length is independent of frequency. (2, 7)

TCROPLT plots the cross correlation (covariance) functions of two time series on the Tektronix graphics terminal; the routine automatically scales the values, determining the range of values to be plotted on the Y-axis. (2)

TFORM1 calculates values of the spectral density function at any arithmetic progression of frequencies on [0,1/2] cycles per data interval, given autocorrelation or autocovariance function of a time series and an array to be used as a weighting kernel. This weighting kernel can be generated using the routine WINDOW. (2, 7, 8)

TFORM2 computes the co- and quadrature spectrum estimates for an arithmetic progression of frequencies on the interval zero to one half cycles per data interval, given the auto and cross correlation functions. Similar to TRANFRM except that it does not produce the associated autospectral estimates. (2, 7, 8)

TIMSPC finds power spectral estimates computed from segments of a long time series, the beginning of each segment being equally spaced in time. The computational approach is a direct one via a fast Fourier transform algorithm and the technique is appropriate for segment lengths slightly less than or, ideally, exactly equal to a power of two. Thus, the routine allows one to compute a type of "time varying" spectra and these spectra can be graphically examined with the aid of a profile plot (PROPLT) or a contour plotting routine. (3)

TLOGPLT plots power spectral estimates on a logarithmic scale and is designed for use with a Tektronix graphics terminal. The routine automatically scales the estimates, determining the range of values to plot on the Y-axis. The estimates must have been computed at equally spaced frequencies. An 80% or 95% confidence interval (computed using routine CONFID) is also plotted. (2)

TNOIZT performs a frequency domain test to determine if a time series can be considered a white noise or purely random process. The test is appropriate for detecting departures from whiteness due to periodic effects, and is intended for use in conjunction with a test based on the autocorrelation function for detecting local correlation. The routine plots theoretical integrated spectrum values with 80% and 95% confidence regions, the integrated spectrum estimates of the time series being computed from Fourier coefficients input to TNOIZT. These Fourier coefficients may be computed using the FOURTR or RCTFFT routine. (2, 7, 21)

TPHAPLT plots the phase estimates with 95% confidence intervals on a Tektronix 4002 graphics terminal. The phase estimates must have been computed at equally spaced frequencies and, in order to generate approximate confidence intervals, the associated squared-coherency estimates at these same frequencies must be given. (2, 7)

TPLTFRQ is designed to plot frequency response function (or any function of frequency) on a Tektronix graphics terminal. The routine scales the frequency values, determining the range of the values to be plotted on the Y-axis. (2)

TPLTSPC is designed to plot power spectra on a Tektronix graphics terminal. The routine scales the spectral estimates, automatically determining the range of values to be plotted on the Y-axis. Also, the plotting of spectral window bandwidth and confidence intervals is possible. The bandwidth of the spectral window associated with any lag window the user may have used is computed by WINDOW and the multiplicative factors needed to determine confidence intervals can be found using the CONFID routine. (2)

TRISMO is designed for smoothing spectral estimates evenly spaced over the interval [0,1/2] (including end points), or equivalently, zero to the Nyquist frequency. The spectral window

applied is a triangular one and the smoothing or convolution is done in a recursive fashion, making it relatively fast. (3, 24)

TSGEN is a conversational program for the generation of a wide variety of time series. More specifically, the program constructs realizations of autoregressive integrated moving average processes where the noise process or "random shock" terms involved may be input from file or generated within the program. In the latter case, a selection of one of four possible families of distributions for the noise is allowed. TSGEN can be run from any Teletype-like terminal, including the Tektronix graphics terminals. (3, 25, 6)

TSPECT1 and TSPECT2 are respectively versions of SPECT1 and SPECT2 that are suitable for use at a Tektronix graphics terminal. (2)

TRANFR calculates values of the spectral density function given the autocorrelation (or autocovariance) function of a time series and an array to be used as a weighting kernel. This weighting kernel can be generated using the routine WINDOW. (1, 7, 8)

TRANFRM calculates spectral density functions, the cospectrum, and the quadrature spectrum, given the autocorrelation (or autocovariance) functions, the cross correlation (or cross covariance) functions of two time series and an array to be used as a weighting kernel. This weighting kernel can be generated using the routine WINDOW. (1, 7, 8)

TTYCON, written in COMPASS, is designed to be used in conversational programs for the output of alphanumeric messages and the input of signed numbers, integer or floating point, and alphanumeric characters. (2)

TTYNUM is designed to be used in conversational programs for the output of one or more alphanumeric messages and the input of one or more signed numbers (integer or floating point) or eight-character alphanumeric identifiers. (2)

UNLEAV is primarily designed for use with RECTFFT. The routine takes an array of interleaved coefficients and separates them, sending the coefficients into two distinct arrays of one half the length of the input array. The length of the input array must be of the form M+2 where M is a power of 2. (1)

USES accepts initial parameter estimates for a seasonal or nonseasonal autoregressive-moving average model and then employs the (possibly differenced and transformed) time series being modeled, computing final parameter estimates. These final parameter estimates are output, along with their covariance and correlation matrix, the residuals from the fitted model, and the sample autocorrelation function of these residuals, and chi-square statistic based on the residual autocorrelations. (3)

USFO generates forecasts with upper and lower probability limits, given the original time series data and a fitted nonseasonal or seasonal autoregressive—integrated—moving average model. Weights for updating forecasts are also output. USFO thus represents the fourth and final stage in a successful modeling attempt, beginning with model identification (USID, CUSID), preliminary estimation of parameters (USPE, CPEES), and final parameter estimated and diagnostic checking (USES, CPEES). (3)

USID accepts a time series as input, possibly transforms and differences the series in seasonal and/or nonseasonal fashion, and then finds the sample autocovariance, autocorrelation, and partial autocorrelation functions. This marks the first of the four programs employed in model identification, parameter estimation, and forecasting, the remaining subroutines being USPE, USES and USFO. Conversational programs (CUSID) and support graphics (ACRPLT) are available for USID. (3, 6, 11, 12)

USPE accepts output from USID and choices for the order of the autoregressive and moving average parts in modeling possibly transformed and differenced time series data; a conversational calling routine for USPE is CPEES. (3)

WINDOW generates an array to be used as a weighting function or lag window. One of six different lag windows may be selected: The rectangular or box car window, the Parzen lag window, the Bartlett or triangle window, the Tukey or cosine window, the Lanczos data window, and the Lanczos-squared data window. (1, 7)

WINDOW1 generates a symmetrical array of weights for use as a data window, as required, for example, in the spectrum estimation procedures of the ARAND routines FOUSPC, FOUSPC1, FOUSPC2, and FFTPS. Two basic window shapes are available, the first having a spectral window very similar to the Tukey or cosine window, while the second produces the Parzen spectral window. (1, 10)

REFERENCES

- 1. ccr-70-4 (R), OS 3 ARAND SYSTEM: Documentation and Examples, Vol. I (Revised 1973).
- 2. ccr-71-01, OS-3 ARAND SYSTEM: Documentation and Examples, Vol. II.
- 3. ccr-73-07, OS 3 ARAND SYSTEM: Documentation and Examples, Vol. III.
- Cooley, J.W., P.A.W. Lewis and P.D. Welch, "The Fast Fourier Transform Algorithm and its Applications," IBM Research Pub., No. RC1743, 1967.
- 5. Stockham, R.G., Jr., "High Speed Convolution and Correlation," 1966 Spring Joint Computer Conference, AFIPS Proc., Vol. 28, Washington, D.C. Spartan, 1966, pp. 229-233.
- Box, G.E.P. and G.M. Jenkins, <u>Time Series Analysis</u>, <u>Forecasting and Control</u>, Holden-Day, San Francisco, 1970.
- Jenkins, G.M. and D.G. Watts, <u>Special Analysis and its Applications</u>, Holden-Day, San Francisco, 1968.
- 8. Parzen, E., Time Series Analysis Papers, Holden-Day, San Francisco, 1967.
- 9. IBM System 360 Scientific Subroutine Package (360A-CM-03X) Version III
- 10. Welch, P.D., "The Use of the Fast Fourier Transform for the Estimation of Power Spectra:
 A Method Based on Time Averaging over Short, Modified Periodograms," IEEE Transactions on Audio and Electroacoustics, Vol. AU-15, No. 2, June 1967.
- 11. Nelson, Charles R., Applied Time Series Analysis for Managerial Forecasting, Holden-Day, 1973.
- Wichern, Dean W., "Modeling and Forecasting Discrete Univariate Time Series with Applications," Information Sciences, Vol. 6, 247-264, 1973.
- 13. Rabiner, L.R., C.M. Rader and R.W. Schaefer, "The Chirp Z-Transform Algorithm," IEEE Transactions on Audio and Electroacoustics, Vol. AU-17, No. 2, June 1969.
- 14. Rabiner, L.R., R.W. Schaefer, and C.M. Rader, "The Chirp Z-Transform Algorithm," Bell Sys. Tech. J., Vol. 48, pp. 1249-1292, May 1969.
- 15. Bingham, C., M. Godfrey, and J.W. Tukey, "Modern Techniques of Power Spectrum Estimation," IEEE Transactions on Audio and Electroacoustics, Vol. AU-15, No. 2, June 1967.
- Granger, C.W.J., <u>Spectral Analysis Economic Time Series</u>, Princeton University Press, Princeton, NJ, 1960.
- 17. Robinson, Enders A., <u>Multichannel Time Series Analysis with Digital Computer Programs</u>, Holden-Day, San Francisco, 1967.
- 18. Levinson, N., "The Weiner RMS (root mean square) Error Criterion in Filter Design and Prediction," Journal of Mathematical Physics, Vol. 25, pp. 261-278, 1946.
- 19. Helms, Howard, D., "Nonrecursive Digital Filters: Design Methods for Achieving Specifications on Frequency Response," IEEE Transactions on Audio and Electroacoustics, Vol. AU-16, No. 3, Sept. 1968.
- 20. Hamming, R., Numerical Methods for Scientists and Engineers, McGraw-Hill, 1962.
- 21. Fisz, Marek, <u>Probability Theory and Mathematical Statistics</u>, Wiley Publications in Statistics, New York, 1963.

1

- 22. Marsaglis, G. and T. Bray, "A Convenient Method for Generating Normal Variables," SIAM Review, Vol. 6, No. 3, July 1964.
- 23. Beyer, W.H., ed., <u>Handbook of Tables for Probability and Statistics</u>, The Chemical Rubber Co., 1966.
- 24. Singleton and Poulter, "Spectral Analysis of a Killer Whale Call," IEEE Transactions on Audio and Electroacoustics, Vol. AU-15, No. 2, June 1967.
- Durbin, J., "The Fitting of Time Series Models," Rev. Int. Inst. Stat., Vol. 28, No. 233, 1960.
- 26. BOMM, A System of Programs for the Analysis of Time Series, Institute of Geophysics and Planetary Physics, University of California, La Jolla.

Director, Computer, Center Oregon State University Corvallis, OR 97331

Available from originator only

Telephone (503) 754-2494

Generates Arbitrary Filter

Language - FORTRAN IV Hardware - IBM 1800

Generates a lowpass, bandpass, or highpass filter defined by three parameters, with or without its conjugate; punches the multipliers on cards; and lists its amplitude response over the full frequency range. NIO Program No. 158. Author - D.E. Cartwright.

National Institute of Oceanography Copy on file at NODC (listing, documentation) Wormley, Godalming, Surrey, England

Two-Dimensional Autocorrelation

Language - FORTRAN

Hardware - IBM 7090/IBM 1401

Applies regression and correlation analyses to a sample of ocean terrain. Computes variance and covariance as function of position in data field. Ref. Arthur D. Little, Inc., Technical Report No. 1440464, "Statistical Analyses of Ocean Terrain and Contour Plotting Procedures," by Paul Switzer, C. Michael Mohr, and Richard E. Heitman, April 1964. Appendices B and C of report describe (but do not list) two routines used: (1) "Correlation Constants" (IBM 7090); (2) "Local Means and Variances" (IBM 1401).

Trident/ASW Library Arthur D. Little, Inc. 35 Acorn Park Cambridge, MA 02140 Copy on file at NODC (listing); documentation (above report) available from NTIS, Order No. AD 601 538/LK, \$4.75 paper, \$2.25 microfiche.

Time Series Analysis BLACKY

Language - FORTRAN IV Hardware - IBM 360

Computes, for two simultaneous time series, cross spectra, power spectra, phase and coherence. Subprograms obtain the filtered series, remove the trend, and compute the auto- and cross correlations. This NPGS library program is listed in a thesis by John G. McMillan, June 1968. The thesis uses digital analysis by program BLACKY in the study of temperature fluctuations near the air-sea interface, the wave field at the same point, and the downstream wind velocity.

Naval Postgraduate School Monterey, CA 93940 Thesis available from NTIS, Order No. AD 855 533/LK, \$3.25 paper, \$2.25 microfiche.

Spectral Analysis of Time Series

Language - FORTRAN IV/ALGOL 60 Hardware - UNIVAC 1108/Burroughs B5500 Finds the spectra, cospectra, quadspectra, coherence, and phase of two series or a single spectrum of one series, using the fast Fourier transform (algorithm of Cooley and Tukey, 1965). Special Report No. 6, by Everett J. Fee, March 1969.

The Librarian Center for Great Lakes Studies University of Wisconsin-Milwaukee Milwaukee, WI 53201 Copy on file at NODC (above report)

Spectra Programs
DETRND, AUTCOV, CRSCOV, FOURTR

Language - FORTRAN IV Hardware - IBM 360-40

DETRND removes the mean, or the mean and linear trend (slope), from a time series. AUTCOV computes the autocovariance of the time series. CRSCOV computes the auto- and cross-covariances of two sequences. FOURTR computes either the sine or cosine Fourier transform. Smoothing of either is optional. Technical Note 13, "Water Wave Teaching Aids," by Ralph H. Cross. Adapted (with permission) from a program written at Bell Laboratories by M.J.R. Healy, 1962.

Hydrodynamics Laboratory Copy on file at NODC (above report)
Massachusetts Institute of Technology
Cambridge, MA 02139

Analysis of Non-Linear Response Surface

Language - FORTRAN IV Hardware - IBM 1130

Analyzes the data from response surface experiments when two or three factors are measured. Options allow calculation of maximum likelihood estimates of power transformations of both independent and dependent variables, and the plotting of their relative maximum likelihood graphs, as a measure of the precision of the principal estimates. The data is then subjected to analysis of variance, using orthogonal polynomials, and principle component analysis; specified contours of the dependent variable are plotted, both without and with transformation. FRB Technical Report No. 87 by J.K. Lindsey, Aug. 1968.

Pacific Biological Station Fisheries Research Board of Canada P. O. Box 100 Nanaimo, B. C. V9R 5K6 Copy on file at NODC (above report)

Multiple Discriminant Analysis MULDA

Language - FORTRAN IV Hardware - IBM 1130

A complete multiple discriminant analysis is performed by six interrelated programs which are executed in succession through the link feature in 1130 FORTRAN. Will accept up to 25 variates and as many as 10 groups. Any number of additional data cards can be read and processed after the discriminant analysis has been completed. The value of the discriminant function, classification chi-squares, and probabilities of group membership are computed and printed for each additional m-variate observation. FRB Technical Report No. 112 (unpublished manuscript), by L.V. Pienaar and J.A. Thomson, March 1969.

Pacific Biological Station Copy on file at NODC (above report)
Fisheries Research Board of Canada
P. O. Box 100
Nanaimo, B. C. V9R 5K6

Fourier Analysis L101 Language - FORTRAN Hardware - IBM 7090/32K

j

Obtains amplitudes and phases of frequency components in any record. Standard Fourier analysis plus use of Tukey cosine window to reduce edge effects. Author - Alsop.

Lamont-Doherty Geological Observa- Copy on file at NODC (deck, documentation) Columbia University Palisades, NY 10964

Cluster Analysis

Language - FORTRAN Hardware - IBM 1800

Carries out a single linkage cluster analysis using data in the form of an upper triangular similarity matrix. Output: (1) similarity level of clustering cycle; (2) a list of the linkages that occur at that similarity level; (3) at the end of the cycle, the cluster numbers and a list of the entities making up each cluster are printed. Running time: A matrix of order 60 took approximately 15 minutes to cluster. NIO Program No. 166. Author - M. Fasham.

National Institute of Oceanography Copy on file at NODC (listing, documentation) . Wormley, Godalming, Surrey, England

Probability Distribution WEIBUL

Language - FORTRAN IV Hardware - IBM 370/120K

Parameters for a Weibull probability distribution are calculated from low, most probable, and high estimates of random variables.

> Robert T. Lackey Department of Fisheries and Wildlife Sciences Virginia Polytechnic Institute and State University Blacksburg, VA 24061

Available from originator only

Statistics from WHOI Format STATS

Language - FORTRAN IV-H Hardware - XDS Sigma 7

Computes and lists statistical quantities related to variables stored on tape in WHOI standard format. See HISTO format reference.

> Richard W. Payne Wood Hole Oceanographic Institution

Available from originator only

Woods Hole, MA 02543

Telephone (617) 548-1400

Extended Normal Separator Program ENORMSEP

Language - FORTRAN IV

Hardware - IBM 360-651/168K where K is 1024

Ì

bytes

Separates a polynomial distribution into its component groups where no a priori information is available on the number of modes, their overlap points, or variance. Transformation of frequency distribution by probit analysis, polynomial regression analysis, and program NORMSEP (Hasselblad, 1966). Input: Observed frequency distribution together with values for identification and control purposes. Output: means, variances, and numerical representation of the separated groups.

> Marian Y.Y. Yong National Marine Fisheries Service P.O. Box 3830

Honolulu, HI 96812

1

Available from originator only

Telephone (808) 946-2181

Single Integration

Language - FORTRAN Hardware - IBM 7074

Equally spaced time series data are integrated once using Tick's method. The data must be sampled at a rate of at least twice the Nyquist frequency. Informal report IM No. 66-36. OS No. 66-36. Author - E.B. Ross.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

CURVE FITTING

Fits a Smooth Curve

Language - FORTRAN IV Hardware - IBM 360-65

Fits a smooth curve between supplied points that passes exactly through those points. Author -Dave Pendleton.

> Oceanographic Services Branch National Oceanographic Data Center

Copy on file at NODC

NOAA/EDS

Washington, DC 20235

Telephone (202) 634-7439

Curve Fitting: Velocity Profile

Language - FORTRAN V

NEWFIT

Hardware - UNIVAC 1108/25K

Fits a velocity profile with a series of curve segments having continuous first derivatives at points of intersection. Output: Printed listings of original data, fitted data, and coefficients of curve segments; also, cards for input to program "Sonar in Refractive Water". NEWFIT is the main routine of the program described in Report AP-PROG-C-8070, "A New Curve-Fitting Program," by Melvin O. Brown, Associated Aero Science Laboratories, Inc., Pasadena, for NUSC, Feb. 1968.

> Naval Undersea Center Pasadena Laboratory 3202 E. Foothill Blvd. Pasadena, CA 91107

Copy on file at NODC (above report)

Least-Squares Curve Fitting in Two, Three, and Four Dimensions UCF, BCF, TCF

Language - FORTRAN II

Hardware - CDC 3100

Three subroutines, UCF, BCF, and TCF (for Univariate, Bivariate, and Trivariate Curve Fit), for use in two-, three-, and four-space. Curve coefficients calculated by reduction technique due to P.D. Crout (1941). Output: printout of coefficients, in normalized floating point, and differences curve-to-points, in same format. Satellite subroutine SYMMET is called to solve m simultaneous equations in x. BIO Computer Note 68-1-C by F.K. Keyte, Jan. 1968.

> Director Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, N.S., Canada B2Y 4A2

Copy on file at NODC (Report with listing and documentation)

Subroutine for Fitting a Least-Squares Distance Hyperplane to Measured Data

Language - FORTRAN V Hardware - UNIVAC 1108

A subroutine for modeling measured data in k-space by a least-squares distance hyperplane, and numerically compared with ordinary least squares. Minimizes the sum of the squares of the perpendicular distances from the points X_m to the hyperplane model. Input: Points $X_m = (x_{m1},$ x_{m2},\ldots,x_{mk}) in k-space, where each component x_{mi} is in error. Output: Normal form of the hyperplane: $\Lambda X' - p = 0$ ($\Lambda \Lambda' = 1$); p is the distance from the origin of the coordinate axes to the hyperplane. NUSC/NL Tech. Memo. No. PA4-121-74, "A Computer Subroutine for Fitting a Least Squares Distance Hyperplane to Measured Data," by M.J. Goldstein.

> Marvin J. Goldstein Naval Underwater Systems Center New London, CT 06320

Available from originator only

Telephone (203) 442-0771, ext. 2415

1

Fits Polynomial P3TERM

Language - FORTRAN IV Hardware - IBM 360-65

This routine fits a polynomial function $Y(x) = a_0 + a_1x + a_2x^2 + \dots + a_mx^m$ to the data (x_1, Y_1) , $(x_2, Y_2) \dots (x_n, Y_n)$ by using the least squares criterion. The method is very accurate and should perform well for up to a 20-term polynomial and 100 data points.

Jerry Sullivan
Center for Experiment Design and
Data Analysis
Washington, DC 20235

Available from originator only

Telephone (202) 634-7288

Least-Squares Plot

Language - FORTRAN Hardware - IBM 7074

Fits an n-degree polynomial (max. n = 10) or an exponential function to data points (max. 300), plotting the actual curve and the computed curve for comparison or plotting the data points only to help identify the type of curve they represent. OS No. 10112. Author - James S. Warden.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

Temperature, Salinity Corrections CURVFIT N1S512

Language - FORTRAN

Hardware - UNIVAC 1108/DEC PDP-9/6K words

Determines corrections for electronically measured temperature and salinity data, using linear and curvilinear regression techniques. Input: Temperatures or salinity data collected simultaneously with electronic sensors, reversing thermometers, and Niskin bottles. Output: Corrections for a range of possible observed values, equations of best fit linear, parabolic, and cubic equations, and standard error of estimate.

Harry Iredale U.S. Naval Oceanographic Office Washington, DC 20373

Copy on file at NODC (Deck, listing, documenta-

tion

Telephone (202) 433-3257

Bartlett's Curve Fitting

Language - FORTRAN Hardware - IBM 1800

Bartlett's method for computing the best value for fitting a linear relationship or an exponential relationship. The 70% and 90% confidence limits on the slope are also found. The program takes a maximum of 99 sets of data, each with a maximum of 500 points. NIO Program No. 174. Author - Maureen Tyler.

National Institute of Oceanography Copy on file at NODC (listing, documentation) Wormley, Godalming, Surrey, England

Curve Fitting CRVFT

Language - FORTRAN II Hardware - GE 225

Finds either best least-squares fit to n points within specified standard deviation "sigma," or fits a specified "M-curve" order curve -- the former executed by M-curve negative, the latter by M-curve non-negative. In either case "SD" is the actual standard deviation as calculated. BIO Computer Note 66-5-C, Appendix 5; also, a 14-page writeup is in the "COPE" catalog (1965) of the Woods Hole Oceanographic Institution. Author - F.K. Keyte.

Bedford Institute of Oceanography P. O. Box 1006 Dartmouth, N. S. B2Y 4A2

Copy on file at NODC (deck, documentation)

Telephone (902) 426-3410

APPLIED MATHEMATICS

Linear Interpolation

Language - PL/1

Hardware - IBM 360-65/144 (hex) bytes

Computes a linear interpolation on fullword fixed binary integers. Author - Robert Van Wie.

Oceanographic Services Branch

Copy on file at NODC

National Oceanographic Data Center

NOAA/EDS

Washington, DC 20235

Telephone (202) 634-7439

Lagrangian Three-Point Interpolation

LAG3PT

Language - PL/1

Hardware - IBM 360-65

Computes a Lagrangian three-point interpolation; calls subroutine LININT. Author - Robert Van Wie.

Oceanographic Services Branch

Copy on file at NODC

National Oceanographic Data Center

NOAA/EDS

Washington, DC 20235

Telephone (202) 634-7439

Calculates Spline Coefficient

Language - FORTRAN IV

SPLCOF

Hardware - IBM 360-65

Calculates spline coefficient for use by routine SPLINE. Author - Dave Pendleton.

Oceanographic Services Branch

National Oceanographic Data Center

NOAA/EDS

Washington, DC 20235

Copy on file at NODC

Telephone (202) 634-7439

Interpolating by Cubic Spline

SPLINE

Language - FORTRAN IV

Hardware - IBM 360-65/832 bytes (object form) .

Performs interpolation by cubic splines. This method fits a cubic spline between adjacent points while insuring that the first two derivatives remain continuous. The endpoints (X(1) and X(N)) use an extrapolation of the curvature at points X(2) and X(N-1). Author - Dave Pendleton.

Oceanographic Services Branch

National Oceanographic Data Center

NOAA/EDS

Washington, DC 20235

Copy on file at NODC

Telephone (202) 634-7439

Program for Smoothing Data

Using the Cubic Spline

Language - FORTRAN IV

Hardware - UNIVAC 1108

Fits measured data with the smoothing cubic spline, using an extension of Reinsch's technique which brings the second derivative of the spline to zero at its end points. The extension allows end conditions on either first or second derivatives. Input: Set of sample data (x1, y1), i = 0), 1, ..., $n \ge 2$; $x_0 < x_1 < ... < x_n$ and end conditions on either the first or second derivative and a smoothing parameter $S \in (N-\sqrt{2N}, N+\sqrt{2N})$ where N = n+1. Output: Smoothed data values

 \tilde{y}_1 and pointwise approximations to the first and second derivatives at the points x_1 . NUSC Tech. Memo. No. PA4-48-74, "On a Computer Program for Smoothing Data Using the Cubic Spline," by M.J. Goldstein.

Marvin J. Goldstein Naval Underwater Systems Center New London, CT 06320 Available from originator only

Telephone (203) 442-0771, ext. 2415

Solve Algebraic Equations MATRIX

Language - USASI FORTRAN Hardware - CDC 3300/20K words

Solves n linear algebraic equations in n unknowns, using Cholesky's method.

Alan T. Massey Naval Underwater Systems Center Newport, RI 02840 Available from originator only

Telephone (401) 841-4772

Checks Angles

Language - FORTRAN IV

Hardware - IBM 360-65/CDC 6600

In the use of angles, this routine assures that any angle remains between 0° and 360°.

Robert Dennis Center for Experiment Design and Data Analysis, NOAA/EDS Washington, DC 20235 Available from originator only

Telephone (202) 634-7344

Trigonometry Subroutines ASSUB, SAS, ASA

Language - FORTRAN Hardware - IBM 1800

ASSUB calculates trig other side. Input: 1 angle, 2 sides. Output: Two possible side lengths; if either or both returned sides are zero, these values are undefined. SAS calculates other side. Input: Side, angle, side. Output: Length of other side. ASA calculates other two sides. Input: Angle, side, angle. Output: Length of other two sides.

Michael Moore Scripps Institution of Oceanography P.O. Box 1529

La Jolla, CA 92037

Available from originator only

Telephone (714) 452-4194

Inter-Active Calculations DSDP/CALC

Language - ALGOL

Hardware - Burroughs 6700/6K words

Provides inter-active computing abilities for persons with the occasional need to do numerical calculations involving small amounts of data. The user may address either the "definition level" or "evaluation level" of ten independent working spaces in which any number of expresions may be defined. The program can save the total working environment for later use. In put: General arithmetic expressions defined in terms of alpha-numeric identifiers, system intrinsic functions and previously defined expressions. An expression is evaluated by assigning values to the independent variables in either an identifier prompting mode or free-field input mode.

W. Thomas Birtley Deep Sea Drilling Project Box 1529 La Jolla, CA 92037 Available from originator only

Telephone (714) 452-3526

DATA REDUCTION, EDITING, CONVERSION, INVENTORY, RETRIEVAL, AND SPECIAL INPUT-OUTPUT

Thermometer Correction TCPLO

Language - FORTRAN IV

Hardware - XDS Sigma 7/12,500 words/2 tape

units/CalComp Plotter

Plots thermometer correction curves and prints the calibration data for each thermometer. Formulas used are from "On Formulas for Correcting Reversing Thermometers," by F.K. Keyte.

Mary Hunt

Available from originator only

Woods Hole Oceanographic Institution Woods Hole, MA $\,$ 02543

Telephone (617) 548-1400

Thermometer Correction, Depth Computation

Language - HP ASA Basic FORTRAN

Hardware - HP 2100/HP 2116/12K words/Keyboard/

CalComp Plotter/Paper tape

optional

Corrects thermometer readings and computes depth or pressure. Input: Station information, including thermometer readings, and thermometer calibrations. Output: Depth and corrected temperature for each station.

Chris Polloni

Available from originator only

Woods Hole Oceanographic Institution Woods Hole, MA 02543

Telephone (617) 548-1400

Areal Concentration INTEGRATE

Language - FORTRAN IV

Hardware - IBM 360/3676 bytes

Performs integration of samples taken at discrete depths to produce areal concentrations. Integration is of form $N[d_{n+1}-d_n][(A_{n+1}+A_n)/2]$ where d=depth and A=values of a variable for each of N depths. Input: Data cards containing sample identification codes and depth values along with substance to be integrated. An unlimited number of depths and variables may be integrated. Output: Printed output includes sample identification codes, list of depths and variable values, a depth-weighted average for each depth interval, and the running sum; punched output includes identification codes and integration from surface to selected depths. "A Computer Program Package for Aquatic Ecologists," by Paul J. Godfrey, Lois White, and Elizabeth Keokosky.

Paul J. Godfrey
Department of Natural Resources
Cornell University Fernow Hall

Copy on file at NODC (listing, documentation)

Cornell University, Fernow Hall Ithaca, NY 14850

Telephone (607) 256-3120

Unweighted Averages AVERAGE

Language - FORTRAN IV

Hardware - IBM 360/5824 bytes

Calculates unweighted averages over depth; depths for which data are averaged may be controlled. Input: Data cards with sample identification codes, depth and variables to be averaged; if average is to be controlled by a variable such as thermocline depth, this must also be included. Output: Printed or punched averages of several variables in a form similar to the input data, i.e., one variable after another on each card, thus suitable for use in packaged programs. "A Computer Program Package for Aquatic Ecologists," by Paul J. Godfrey, Lois White, and Elizabeth Keokosky.

Paul J. Godfrey Department of Natural Resources Cornell University, Fernow Hall Ithaca, NY 14850 Copy on file at NODC (listing, documentation)

Telephone (607) 256-3120

Bathymetric Data Reduction

Language - FORTRAN Hardware - IBM 7074

Processes data gathered while navigating with any circular and/or hyperbolic system. Eight options are available pertaining to position conversion, form of input, data smoothing, special corrections, and interpolation of position-dependent values such as contour crossings. OS No. 53559.

Data Systems Office U.S. Naval Oceanographic Office Washington, DC 20373 Available from originator only

Telephone (301) 763-1449

Julian Day Conversion JDAYWK

Language - FORTRAN IV Hardware - IBM 360-65

Computes the date from the Julian day.

Paul Sabol Center for Experiment Design and Data Analysis, NOAA/EDS Washington, DC 20235 Available from originator only

Telephone (202) 634-7344

Julian Date Conversion Routines JULDAY, JULIAN, JULYAN, JULSEC, CESLUJ

Language - FORTRAN IV

Hardware - IBM 360/CDC 6600/PDP-11

Given the month (1-12), day, and year, JULDAY returns the Julian Day. JULIAN calculates month (in 10-character words) and day, given the year and Julian date. JULYAN calculates month (digital) and day from given year and Julian date. JULSEC yields Julian seconds from Julian day, hour, minute, and second. CESLUJ computes the Julian date, hour, minute, and second, given Julian seconds.

Robert Dennis Center for Experiment Design and Data Analysis, NOAA/EDS Washington, DC 20235 Available from originator only

Telephone (202) 634-7344

Day of the Week

Language - FORTRAN IV Hardware - IBM 360-65

This subroutine returns the day of the week for any date in the nineteenth or twentieth century. Modifications include conversion of the function to a subroutine so Julian day can be extracted and addition of an array containing an alphanumeric description of the day.

Paul Sabol Center for Experiment Design and Data Analysis, NOAA/EDS Washington, DC 20235

Available from originator only

Telephone (202) 634-7344

Date Calculations
DAYWK, NWDAT, NXTDY, YSTDY

Language - FORTRAN Hardware - IBM 1800 Given year (4 digits) and Julian Day (1-366), DAYWK produces the day of the week (1-7, Sun.-Sat.). Given packed date (bits 0-3 month, 4-8 day, 9-15 year), NWDAT produces following date, packed and unpacked. Given day, month, year, NXTDY returns day, month, year of next day. Given packed date, YSTDY produces preceding date (packed).

Michael Moore Scripps Institution of Oceanography

P.O. Box 1529

La Jolla, CA 92037

Available from originator only

Telephone (714) 452-4194

Julian Day Subroutines CLEJL, CLJUL

Language - FORTRAN Hardware - IBM 1800

Both subroutines calculate Julian Day. Input formats vary. CLEJL format, 01 Nov. 70; CLJUL format, day (1-31), year (00-99), month (1-12).

Michael Moore

Available from originator only

Scripps Institution of Oceanography

P.O. Box 1529

La Jolla, CA 92037

Telephone (714) 452-4194

Time Conversion DTIME

Language - FORTRAN

Hardware - IBM 1800

Calculates hours, minutes, and seconds, given thousandths of hours.

Michael Moore

Available from originator only

Scripps Institution of Oceanography

P.O. Box 1529

La Jolla, CA 92037

Telephone (714) 452-4194

Current Meter Data Reduction

Language - FORTRAN IV

Hardware - IBM 1800

Converts data in the form of angular positions of the rotor and compass arcs from Braincon type 316 current meters into values of current speed and direction, tilt direction, N-S and E-W current components and displacements in kilometers from any arbitrary origin. Data are output to lineprinter with column headings and magnetic tape without headings. Author - W.J. Gould.

National Institute of Oceanography

Copy on file at NODC (listing, documentation)

Wormley, Godalming, Surrey

United Kingdom

Reduction and Display of Data Acquired

at Sea

Language - FORTRAN II Hardware - IBM 1130/Disk/CalComp 30" plotter

A system of programs (navigation, gravity, topography, magnetics) for the reduction, storage, and display of underway data acquired at sea. A large number of the programs utilize navigation points together with raw digitized geophysical data presented as a time series, where the different data may be read at unequal intervals. Technical Report No. 1, by Manik Talwani, August 1969.

> Lamont-Doherty Geological Observatory

Available from NTIS, Order No. AD 693 293/LK, \$10.00 paper copy, \$2.25 microfiche.

Columbia University Palisades, NY 10964 Hydrographic Data Reduction TWO FIVE

Language - FORTRAN 63 Hardware - CDC 3600

Processes raw data to obtain corrected depth, temperature, salinity, and oxygen, as follows: (1) from protected deep-sea reversing thermometer readings, obtains corrected in situ temperature; (2) from unprotected deep-sea reversing thermometer readings, obtains the thermometric depth, corrected for gravity variations and for the mean density of the overlying water column in any ocean; (3) fits least-squares curves to wire length vs. (wire length minus thermometric depth) to determine the accepted depth; (4) calculates salinity from raw salinity readings; (5) calculates dissolved oxygen concentrations from titrations. Report (unpublished manuscript) by Norma Mantyla, Oct. 1970.

Marine Life Research Group Scripps Institution of Oceanography P.O. Box 1529 La Jolla, CA 92037 Copy on file at NODC (above report)

Station Data Reduction SYNOP

Language - FORTRAN II, FAP
Hardware - IBM 7094-7040 DCS/25,335 words (main program), 2058 words (subroutines)

Reduces data from raw shipboard observations. Corrects thermometers and computes thermometric depths, wire angle depths, salinities from bridge readings, oxygen values from titrations; then computes sigma-t, oxygen saturation percent, and apparent oxygen utilization. Technical Report No. 181 (M67-8), "Processing of Oceanographic Station Data: A Coordinated Computer-Compatible System," by Eugene E. Collias, Jan. 1968.

Department of Oceanography University of Washington Seattle, WA 98105 Available from NTIS, Order No. AD 670 472/LK, \$5.75 paper, \$2.25 microfiche.

Thermometer Correction TCHK2

Language - FORTRAN VI Hardware - IBM 1130

Corrects deep-sea reversing thermometers, computes thermometric depths, allows spurious values to be removed from L-Z table, smooths the L-Z table, and punches smoothed depth and observed temperature and salinity and oxygen values onto cards in CODC format. Two other thermometer correction programs are available: TCHK1 uses the L/Z method; TCHK3 computes pressure. FRB Manuscript report No. 1071 (unpublished manuscript), by C.A. Collins, R.L.K. Tripe and S.K. Wong, Dec. 1969.

Pacific Biological Station Fisheries Research Board of Canada P. O. Box 100 Nanaimo, B. C. V9R 5K6 Copy on file at NODC (above report)

Read NODC Format Station Data

Language - FORTRAN IV Hardware - XDS Sigma 7

READTAPE MASTER ENVIR DETAIL 1,000 words 200 words 118 words 280 words

Subprogram READTAPE reads, unpacks, and returns to the user NODC oceanographic station data records, one station at a time. Subprogram MASTER takes information from master record and returns the information to the calling program. Subprogram ENVIR takes information from the first 24 characters of master or observed detail record and returns the information to the calling program in usable form. Subprogram DETAIL takes the information from an observed detail record and returns to the calling program correct values for all variables and suitable indicators for special conditions. Input to all subprograms: NODC station data on cards or tape.

Mary Hunt
Woods Hole Oceanographic Institution

Available from originator only

Woods Hole, MA 02543

Telephone (617) 548-1400

Reads NODC Station Data Tape '

Language - FORTRAN IV Hardware - IBM 360-65

This subroutine reads a NODC station data tape (120 characters per record), checks the indicators in characters 81-120, sets the decimal points, then prints the master records, observed station data, and standard station data for each station. See program CAPRICORN.

Ruth McMath

Available from originator only

Department of Oceanography Texas A&M University

Texas A&M University College Station, TX 77843

Telephone (713) 845-7432

Converts NODC Format Data to BNDO Format TRANSNODC

Language - FORTRAN IV

Hardware - XDS Sigma 7/2 tape or disk units

This system prepares data in NODC format for introduction into the Poseidon system; header data are listed, stations are selected and separated into cruises with inventories at the cruise level, and output is provided in BNDO format. Report, "Transcodage des donnees NODC."

Mr. Stanislas, BNDO

Copy on file at NODC

Centre National pour l'Exploitation

des Oceans Boite Postale 337

29273 Brest Cedex, France

Telephone 80.46.50, telex 94-627

Converts Data to BNDO Format TRANSCOD

Language - FORTRAN IV

Hardware - XDS Sigma 7/2 tape or disk units

This system prepares data in out-of-house formats for introduction into the Poseidon system; header data are listed, stations are selected and separated into cruises with inventories at the cruise level, and output is provided in BNDO format. Input formats are those of ORSTOM, SHOM, etc.

Mr. Stanislas, BNDO

Copy on file at NODC

Centre National pour l'Exploitation

des Oceans

Boite Postale 337

29237 Brest Cedex, France

Telephone 80.46.50, telex 94-627

Reads BNDO Format Data LSTA 1142 Language - FORTRAN IV

Hardware - XDS Sigma 7

This subroutine is used to read easily the physical, chemical, and biological data in the complex and very flexible BNDO format. Data may be on disk, tape, or cards. After the call, the station is stored in a common area.

Mr. Stanislas, BNDO

Copy on file at NODC

Centre National pour l'Exploitation

des Oceans

Boite Postale 337

29273 Brest Cedex, France

Telephone 80.46.50, telex 94-627

Editing for WHOI format

Language - FORTRAN IV-H Hardware - XDS Sigma 7

Provides several methods by which data stored in WHOI standard format may be edited and tested. Output is the corrected version of the data on 9-track tape. See HISTO format reference.

Richard E. Payne

Available from originator only

Woods Hole Oceanographic Institution

Woods Hole, MA 02543

Telephone (617) 548-1400

Mailing Labels

MAILER

Language - ALGOL

Hardware - Burroughs 6700/16K words

Generates 4-up peel-off mailing labels on the line printer. Options: Bulk mail handling, sorting by user defined key, rejection of records by user defined key. Input: Addresses on punched cards; privileged information may be included which is not printed.

Peter B. Woodbury

Available from originator only

Deep Sea Drilling Project

Box 1529

La Jolla, CA 92037

Telephone (714) 452-3526

Fortran Access to Scientific Data FASD

Language - FORTRAN II, CODAP-1

Hardware - CDC 1604/4850 48 bit words

Designed to be used as a subroutine, FASD accomplishes the dual purpose of converting an existing data base to FASD format as well as providing a convenient unpack data handling tool. For user convenience, I/O tape status checking, bit shifting, data bias manipulation, etc., have been absorbed by the package so that raw data can be made immediately available from the FASD pack; or raw data can be packed into the FASD format by a single instruction. Available functions are fixed or floating point READ, WRITE, READ IDENT only, and SKIP. The present data base is NODC station data. Access time is 44 seconds for 1,000 random length observations. A table of pointers is maintained to insure accurate transmission of observation data. The FASD format provides an extremely tight pack of thermal structure data where the observation format consists of an identification (parameters such as position, metering device, station number, date time group) and a temperature profile. The FASD format is not computer word length oriented. Input: (1) Raw data to be packed into the FASD format, or (2) magnetic tape containing data in the FASD format. Output: If input (1), a magnetic tape containing FASD packed data; if input (2), raw data are output to the driving program.

> Alan W. Church, Code 80 Fleet Numerical Weather Central Monterey, CA 93940

Copy on file at NODC (listing)

Reproduce and Serialize Deck

Language - FORTRAN IV Hardware - CDC 6600

Reproduces, lists, and serializes source or data decks. Program options allow reproduction without serialization and up to 999 reproductions and listings of the input deck. Input may be any standard FORTRAN or alphanumeric punch deck.

> Jack Foreman Center for Experiment Design and Data Analysis, NOAA/EDS Washington, DC 20235

Available from originator only

Telephone (202) 634-7344

Flags Suspicious Data Values EDITQ

Language - FORTRAN IV Hardware - IBM 360-65 EDITQ is designed as a computationally fast and efficient means of flagging suspiciously large or small values in a series of data. The data series is fitted with a least-squares fit straight line under the assumption that the programer limits the length of the data series to regions sufficiently small so that the straight line is locally a good approximation to the trend.

> Donald Acheson Center for Experiment Design and Data Analysis, NOAA/EDS Washington, DC 20235

Available from originator only

Telephone (202) 634~7288

Format Free Input Subroutine QREAD

Language - FORTRAN Hardware - IBM 1800

A format free input subroutine for cards or other sources. Input: Integer array with first eight variables set to determine input.

> Michael Moore Available from originator only Scripps Institution of Oceanography P.O. Box 1529

Telephone (714) 452-4194

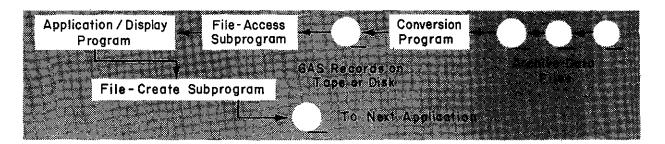
Meters vs. Fathoms MATBL

Language - FORTRAN

Hardware - IBM 1800/16K words

Produces table of corrected depths in meters vs. raw fathoms.

Michael Moore Available from originator only Scripps Institution of Oceanography P.O. Box 1529 La Jolla, CA 92037


Telephone (714) 452-4194

A File-Independent, Generalized Application System, GAS

La Jolla, CA 92037

Language - FORTRAN IV-G, Assembler, PL/1-F Hardware - IBM 360-65

Development of GAS was based on the following premises: (1) most files of oceanographic data consist of identification fields (location, date, etc.), an independent variable (perhaps water depth or time), and one or more dependent variables (e.g., water temperature or dissolved oxygen); (2) a system could be designed to treat these items uniformly, i.e., instead of tailoring programs to a discrete data file, the basic units could be extracted and transmitted to a generalized applications system from which many products could be derived. As a result, GAS has "n" number of applications programs, rather than a theoretical maximum of "n" times the number of files. Only one extra program was necessary -- the conversion module which provides a link between the various data files and the GAS system. The system of applications programs is tailored to an intermediate file created by this conversion module. Version 1 of the conversion module can access the files for Nansen casts, mechanical bathythermographs (BT), and expendable bathythermographs (XBT); soon to be added are the continuous salinity-temperaturedepth (STD) file, ICES ocean surface reference file, and data from cooperative oceanographic research projects.

Following are descriptions of individual programs and subroutines:

GASDIPBS reads the NODC GAS file and, on one pass of the data, produces any one of three different printouts, depending on the control card entry. Author - Gary Keull (44K, FORTRAN IV-G).

GASSAMPC prints the first three and the last basic master records only of a GAS formatted data set and gives a record count. Author - Gary Keull (38K, FORTRAN IV-G).

GASEINV prints out a geographic inventory of GAS data by ten-degree square, one-degree square, and month, and gives counts of all one degrees and ten degrees and a total number of stations processed. Author - Gary Keull (40K, FORTRAN IV-G).

GASCCI reads GAS records and prints out country code, reference identification number, and from and to consec numbers. Also gives a total station count. Author - Gary Keull (40K, FORTRAN IV-G).

GASVAPRT reads the output of the program GASVASUM and prints vertical array summaries. Author - Walter Morawski (48K, FORTRAN IV-G).

GVAREFRM takes the GAS vertical array summary programs summed records and produces a 110 character output record. Author - Gary Keull (30K, FORTRAN IV-G).

GASTHERM computes the depth of the thermocline and mixed layer if desired. Also outputs a temperature gradient analysis. Author - Walter Morawski (40K, Assembler).

GASMASK reads the basic and supplementary master information and produces a detailed printout of master information and headings for each station. Author - Judy Yavner (100K, PL/1-F).

INDATA reads GAS records and transfers all the fields present into a common area in core of the calling program. With each call to this subroutine, all master and independent-dependent parameter pairs are transferred to the common area. Author - Walter Morawski (748 bytes (object form), Assembler).

Subroutine CANADA computes Canadian ten-degree, five-degree, two-degree, one-degree, and quarter-degree squares from latitude and longitude degrees and minutes. Authors - Walter Morawski and Gary Keull (5K, FORTRAN IV-G).

Subroutine CREATE creates GAS records when called from a user's program. Author - Walter Morawski (630 bytes (object form), Assembler).

GAS accesses the major files of NODC and creates records compatible with the GAS system. Author - Walter Morawski (96K, FORTRAN IV-G).

MONTH80 selects all stations with a month entry that corresponds to a particular control card entry. Author - Gary Keull (44K, Assembler).

CHEM80 selects all stations with a non-zero chemistry percentage that corresponds to a control card entry. Author - Gary Keull (44K, Assembler).

DEPTH80 selects all stations with a maximum depth greater than the control card entry. Author - Gary Keull (24K, Assembler).

LATLON80 selects an area based on latitude and longitude degrees and minutes entered in a control card. Author - Gary Keull (44K, Assembler).

GASORDER selects certain GAS records (specified by cruise and consec numbers) from an input tape and inserts a sort-order number in an unused area. The output, when sorted on this order number, will be in whatever order the user has specified on the control cards. Author - Walter Morawski (38K, Assembler).

GASVASUM reads GAS type 1, 2, or 3 records and produces three output GAS format records that contain a vertical array summary. (Depth, Max, Avg, Min, Number, Standard Deviation). Summaries are at NODC standard levels, five meter intervals, or ten meter intervals, depending on the input. Author - Walter Morawski (86K, FORTRAN IV-G).

ALTERGAS reads a primary GAS file and finds matches to these records in an auxiliary GAS file. Before outputting, records may be altered and a single file of records may be altered in any way. Author - Walter Morawski (90K, FORTRAN IV-G).

GASB accesses several major files at NODC and creates records compatible with GAS. Author -Walter Morawski (90K, FORTRAN IV-G with Assembler input-output routines).

NODCSQ takes the latitude and longitude fields from the GAS master fields and computes the NODC ten-degree, five-degree, two-degree, one-degree, quarter-degree, and six-minute squares and replaces them into the master field arrays. Author - Walter Morawski (2K, FORTRAN IV-G).

NAMES prints the names of the dependent and independent parameters of the GAS system. At present, there are 29 names which may be printed all at once or singularly; this subroutine is used in program GASDIPBS for output type 2 listings. Author - Gary Keull (28K, FORTRAN IV-G).

SD2GAS accesses the NODC SD2 (station data 2) file, selects upon various criteria, and outputs GAS records of various types; user may at same time output regular SD2 records for use by non-GAS programs. The following options are available:

- A. Standard and/or observed depths only will be returned;
 B. If a value is missing at a particular level, it may be interpolated;
- C. Doubtful and questionable data may or may not be included;
- D. Chemistry values may be shifted to NODC prescribed nearest standard levels. Output formats available:
 - -1 Basic GAS master fields;
 - -2 Basic GAS master fields and all supplementary fields present;
 - O Basic GAS master fields and one independent-dependent parameter pair;
 - 1 Basic GAS master fields and parameter pairs at five-meter intervals;
 - 2 Basic GAS master fields and parameter pairs at ten-meter intervals;
 - 3 Basic GAS master fields and parameter pairs at Nansen levels;
 - 4 Basic GAS master fields and parameter pairs whenever they appeared in that particular record;
- 5 Basic GAS master fields and parameter pairs at depth intervals specified by the user. Author - Walter Morawski (96K, FORTRAN IV-G).

GASSCUDS summarizes SCUDS (surface current-ship drift) records by area, ten-degree, five-degree, two-degree, one-degree, quarter-degree, one-tenth-degree squares, year, month, or day. Outputs produced are optional. Variations include two print formats or two tape formats. Parameters include all geographic information, month, year, day, north and east components, resultant speed and direction, total observations, number of calms, max and mean speeds, and standard deviation. Also available is a distribution of individual observations by speed and direction. Authors - Gary Keull and Walter Morawski (80K, FORTRAN IV-G).

> Copy on file at NODC (tape, documentation) Oceanographic Services Branch National Oceanographic Data Center NOAA/EDS Telephone (202) 634-7439 Washington, DC 20235

Other NODC Programs

Hardware - IBM 360-65

STD Data:

STDRETV retrieves records from the STD geofile; sections are made on the basis of optional select fields; with one exception, these select fields are located in the master records. Author - Robert Van Wie (Assembler).

Station Data:

SD2TOSD1 converts station data from SD2 variable length record to SD1 80 or 83 byte records. Author - Walter Morawski (36K bytes, Assembler).

SDCHAR processes a series of 83 byte records to construct a one-record-per-station file of variable length character records. Author - Robert Van Wie (92K bytes, PL/1).

SDPRT2 produces an edited listing of the SD2 variable length record or data in the 80 byte format. Author - Sally Heimerdinger (36K bytes, Assembler).

SDSELECT selects SD1 records by Marsden square, one-degree square, or card type. Author - Michael Flanagan (24K bytes, Assembler).

SD2MSTCT counts the number of SD2 records and prints the first 50 records and the last record. Author - Elmer Freeman (50K bytes, Assembler).

SD2SAMP selects five records from SD2 tape; used to give users a sample of SD2 data. Author - Walter Morawski (36K bytes, Assembler).

SDGEOIV reads SD2 master file and summarizes the number of stations by month, year, one-degree square, five-degree square, and modified Canadian (ten-degree) square; best results are obtained when running against a geographically sorted file. Author - Michael Flanagan (14K bytes, PL/1).

MAKE120 converts an 80 or 83 byte record from the NODC station data geofile to the 120 character zone-edit format for the IBM 7074. Author - Walter Morawski (36K bytes, Assembler).

DEPTH selects full station data records with depths greater than a given hundred-meter interval. Author - J. Gordon (17K bytes, Assembler).

CRUCON reads either the SD2 file or SD2 master file and prints the NODC cruise consec number inventory. Author - Walter Morawski (36K bytes, Assembler).

CODCCONV converts station data in the format of the Marine Environmental Data Service (formerly CODC - Canadian Oceanographic Data Center) to the NODC format. A table of control cards is required to convert the Canadian cruise reference numbers to the NODC system. Author - Walter Morawski (24K bytes, Assembler).

SUPERSEL selects from the SD2 geofile or master file by Canadian (ten-degree) square. Input file is sorted in Canadian square order; output is identical in format, but contains only the data from the desired Canadian squares. Author - Walter Morawski (36K bytes, Assembler).

SDPASS retrieves SD2 records from either the cruise-sorted file, the geosorted file, or the master file. Output is on one of four formats: (1) the original variable length record; (2) a series of 80 byte fixed-length records; (3) 105 byte fixed-length records; (4) undefined records. Author - Robert Van Wie (Assembler).

Expendable Bathythermograph Data:

XORDER selects XBT data by cruise consec number, inserts a sort number in an unused space; the output, when sorted on this number, will be in whatever order was specified by the user on control cards. Author - Walter Morawski (36K bytes, Assembler).

XBEVALU compares production with standard sample XBT's; sorts input by reference number and consec number before testing and evaluation; prints evaluation statistics. Author - Michael Flanagan (PL/1).

XBTQKOUT enables the user to choose the type of XBT output and the mode of output. Author - Philip Hadsell (60K bytes, FORTRAN IV-G).

XBCONV converts data from seven-track tapes in old NODC XBT format to new NODC format suitable for nine-track tape. Input: Contractor-processed XBT's. Output on disk. Author - Pearl Johnson (56K bytes, PL/1-4).

XBTCOUNT gives a station count of XBT data from either the cruise file or the geofile. Author - Elmer Freeman (Assembler).

XBFNWC, run after XBFNWSUM, reads control cards providing cruise and other master information and, for each cruise, converts (or deletes) Fleet Numerical Weather Central XBT data to the NODC XBT tape record format. Author - Judy Yavner (50K bytes, PL/1).

XBFNWSUM provides a summary of the cruises contained on a file of XBT data from Fleet Numerican Weather Central. Author - Judy Yavner (22K bytes, PL/1).

XBSELECT retrieves from the XBT data file by inputting the desired FORTRAN "if" statements. Author - Philip Hadsell (9K bytes, FORTRAN IV-G).

RETXBT retrieves records from the XBT cruise file or the XBT geofile. Author - Robert Van Wie (Assembler).

XBTCONV converts the XBT binary-character formatted records to an undefined all-character record with a maximum length of 2,500 bytes; primarily used to satisfy requests for XBT data on seven-track tape. Author - Sally Heimerdinger (650 bytes plus 2 times the sum of the buffer lengths, Assembler).

XBMSINV, using the subroutine XBREAD, reads cruise-ordered XBT data and produces a summary of each cruise (one line per cruise), indicating the NODC cruise number, the number of observations per cruise, the beginning and ending dates, the NODC ship code, and the originator's cruise number. Author - Philip Hadsell (FORTRAN).

XBGEOSUM prints a summary of the number of observations within given seasons, one-degree squares, ten-degree squares, and quadrants. Author - Philip Hadsell (80K bytes, FORTRAN IV-G).

Mechanical Bathythermograph Data:

RETBT retrieves records from the BT cruise file or the BT geofile. Author - Robert Van Wie (Assembler).

BTLISTC provides edited printout with headings of the NODC geographically-sorted bathythermograph file. Author - Michael Flanagan (2600 bytes, Assembler).

BTGEOIV reads the bathythermograph file, summarizes the number of stations by month, year, onedegree square, five-degree square, and Marsden square. Author - Charlotte Sparks (14K bytes, PL/1).

Other NODC programs:

SCHNINE prints data from H1-9 surface current file; produces simultaneously any one of the following combinations: (1) edited listing of the entire file; (2) edited listing and punched cards, both for the entire file; or (3) edited listing, unedited listing, and magnetic tape, all for only the first 100 records. Author - Rosa T. Washington (Less than 56K bytes, PL/1).

SCMULTI outputs surface current data in any one of the following combinations: (1) edited listing of the entire file; (2) edited listing and punched cards for the entire file; or (3) edited listing, unedited listing, and magnetic tape, all for only the first 100 records. Author - Rosa T. Washington (72K bytes, PL/1).

DRYLAND reads a sequential tape file and identifies any one-degree square which is completely on land. Author - Robert Van Wie (30K bytes, PL/1).

CANWMO computes a WMO square, given a Modified Canadian square. Requires subroutines GRIDSQ, TENSQ, and WMO. Author - Robert Van Wie (FORTRAN).

> Oceanographic Services Branch National Oceanographic Data Center EDS/NOAA

Copy on file at NODC

Washington, DC 20235

Telephone (202) 634-7439

Reformatted Station Output IBM 1

Language - FORTRAN Hardware - IBM 370

Outputs formatted hydrographic and nutrient chemical data by station; input is NOAA format raw data. Author - Stephen A. Macko.

B.J. McAlice Available from originator only Ira C. Darling Center (Marine Laboratory)
University of Maine at Orono
Walpole, ME 04573 Telephone (207) 563-3146

GENERAL INDEX

	_		
126	A TO D AACAL AANDERAA CURRENT METER AANDERAA CURRENT METER ABRAMSON NORMAN J ABRAMSON NORMAN J ABSOLUTE VALUES SQUARE OF ABUNDANCE ACQUISITION LAMINAE ACCELERATION POTENTIAL ACCELERATION ACFFT ACHESON DONALD ACORR ACOUSTIC PERFORANCE AND EVALUATION ACCUSTIC RAY TRACING ACOUSTIC TRANSPONDER NAVIGATION ACRPLT ACTIVITY COFFEIGIENTS	27	AMEIN MICHAEL
20	AACAL	56	ANGLER-DAYS
20	AANDERAA CURRENT METER	113	AMERICAN POLYCONIC GRID
79	AANDERAA CURRENT METER		COORDINATES
58	ABRAMSON NORMAN J	22	AMEDICAN DIRECT SEALTH ACCA.
60	ARRAMSON NORMAN 1	20	AMENICAN FUDEIC HEALIN ASSN
120	ARCHITE VALUES COURDE DE	28	AMMUNIA
130	ADSOLUTE VALUES SQUARE UF	95	AMUS
24	ACONTESTANO	126	AMPHCO
101	ACQUISTITUN LAMINAE	20	AMPLITUDE
8	ACCELERATION POTENTIAL	80	AMPLITUDES TIDAL CONSTITUENTS
30	ACCELERATION	90	AMSTUTZ
126	ACFFT	5	ANALOG TRACES
149	ACHESON DONALD	126	ANALOG TO DIGITAL TIME SERIES
126	ACORR	87	ANALYS
99 .	ACQUSTIC PERFORANCE AND	33	ANCHOR
	EVALUATION	25	ANCHOR
101	ACQUISTIC DAY TRACING	22	ANCHOR
100	ACCUSTIC TRANSPONDED MAVICATION	20	ANCHOR
107	ACOUSTIC TRANSPONDER MAYIGATION	31	ANCHUR
120	ACRPLI	17	ANDERSON AE JR
23	ACTIVITY CUEFFICIENTS	83	ANDERSON AE JR
23	ACTIVITY PRODUCTS	88	ANCERSON AE JR
27	ADAMS-BASHFORD PREDICTOR	113	ANDOYER - LAMBERT METHOD
10	ADIABATIC TEMPERATURE GRADIENT	113	ANGLE:
99	ADSORPTION COEFFICIENTS	142	ANGLE CHECK
72	ADVECTION	36	ANGLES CARLE
25	AERIAL PECTOGRAPHY	112	ANI TS
51	AFFINITY	107	ANAIOT
58	ACOUSTIC TRANSPONDER NAVIGATION ACRPLT ACTIVITY COEFFICIENTS ACTIVITY PRODUCTS ADAMS—BASHFORD PREDICTOR ADIABATIC TEMPERATURE GRADIENT ADSORPTION COEFFICIENTS ADVECTION AERIAL PECTOGRAPHY AFFINITY AGE AGE AGE AGE AGE AGE AGE AIR—SEA INTERACTION AIR—SEA INTERFACE TEMPERATURE ELUCTUATION	100	ANNOT
50	AGE	100	ANNUT
40	ACE	107	ANNUTATED TRACK
60	AGE	39	ANUMALY MAGNETIC
62	AGE	69	ANOVA
64	AGE ,	70	ANOVA
126	AIR-SEA INTERACTION	68	ANOVA TABLE
134	AIR-SEA INTERFACE TEMPERATURE	73	ANOVA TABLES
	FLUCTUATION	40	ANSCHUTZ GYRO-STABILIZED PLATFORM
90	AGE AIR-SEA INTERACTION AIR-SEA INTERFACE TEMPERATURE FLUCTUATION AIRCRAFT CBSERVATIONS AIRPHOTO ANALYSIS AIRY WAVES ALASKA PLANE COORDINATE SYSTEM ALATORRE MIGUEL ANGEL ALBACORE ALBEMARLE SOUND ALBERS EQUAL AREA CONIC PROJECTION ALCT ALERS PERRY B	108	ANTRK
25	AIRPHOTO ANALYSIS	113	APCTN
83	AIRY WAVES	113	APCHN
113	ALASKA PLANE COURDINATE SYSTEM	- 60	APE-DICT
	ALATORRE MIGHEL ANGEL	112	APE DIGI
60	ALBACODE	113	APULI
24	ALDERADI E COUND	23	ALUEUUS SPECIES
20	ALBERANCE JUDINO	28	ARAGURN
310	ALDEDU	126	ARAND SYSTEM
110	ALBERS EQUAL AREA CONIC	91	ARCTIC SEA ICE
	PROJECTION	143	AREAL CONCENTRATION
22	ALCT	129	ARITHMETIC PROGRESSION
120	ALERS PERRY B	126	ARMAP
103	ALERT	- 2	ARPANET
126	ALIGN	34	ARRAY DYNAMICS
22	ALKALINITY	142	•
6	ALPHA	40	ASKANIA GRAVITY METERS
13		103	ASORT
105	ALRTX	95	ASSOCIATED AERO SCIENCE
135	ALSOP	7)	
	ALSOP	100	LABORATORIES, INC
136		138	ASSOCIATED AERO SCIENCE
151	ALTERGAS		LABORATCRIES, INC
4	AMBROSIONI NESTOR LOPEZ CAPITAN	142	
. .	DE FRAGATA	111	ASTRONOMIC LATITUDE
26	AMEIN MICHAEL	103	ASTRONOMIC POSITION

	·		
80	ASTRONOMICAL TIDE PREDICTION ASTRONOMICAL TIDES ATG ATLANTIC WIND WAVES/SWELLS	22	BARRON JCHN L
82	ASTRONOMICAL TIDES	66	BARTLETT'S THREE GROUP METHOD
10	ATG	138	BARTLETT'S CURVE FITTING
82	ATLANTIC WIND WAVES/SWELLS	25	BASIN BOTTOM PROFILE
1	ATMOSPHERIC PRESSURE	27	BASS P B
88	ATMOSPHERIC PRESSURE ATMOSPHERIC WATER CONTENT MODEL	108	BATHYMETRIC CHART
5	ATWOOD DONALD K AUGUR AUTCOV AUTCOV AUTO AUTO-COVARIANCE AUTO-SPECTRA AUTO-SPECTRAL AUTOCORRELATION	41	BATHYMETRIC PROFILES
27	AUGUR	39	BATHYMETRY
85	ALTON	40	8 ATHYMETRY
135	AUTCOV	41	BATHYMETRY
	AUTO	45	RATHVMCTDV
135	AUTO_COVADIANCE	47	DAININGINI
	AUTO-SPECTRA	144	PATHYMETRY
	AUTO-SPECTRAL AUTOCORRELATION	144	DATINGETON ANNOTATION
125	ACTU-SPECTRAL ACTUCURRELATION	107	BATHYMETRY ANNUTATION
	PLUIS	108	BATHYMETRY DIGITIZATION.
130		90	BATHYTHERMOGRAPH
126	AUTOCORRELATION	153	BATHYTHERMOGRAPH
130	AUTOCORRELATION	151	BATHYTHERMOGRAPH SEE ALSO
132	AUTOCORRELATION		BT AND XBT
134	AUTOCORRELATION	5	BATHYTHERMOGRAPHS
. 126	AUTOCOVAR IANCE	75	BAUER RA
130	AUTOCOVARIANCE	28	BAY CHESAPEAKE MODEL
132	AUTOCOVARIANCE	64	BAYLIFF W F
121	AUTOMATED CONTOUR	24	FAYS MODEL
126	AUTOPLT	138	RCE
126	AUTOPEGRESSIVE AVERAGE	117	REACH AND MEADCHODE MADC
127	ANTOBECOESSIVE INTERDATED	25	PEACH CHMIN ATTOM MODEL
121	MOUTHS AVERAGE MODEL	20	PECKNAN LUITIEV PARIONETER
1.00	MUVING AVERAGE MUDEL	125	BECKMAN-WHITLEY RADIOMETER
132	AUTOCORRELATION AUTOCORRELATION AUTOCORRELATION AUTOCOVARIANCE AUTOCOVARIANCE AUTOCOVARIANCE AUTOCOVARIANCE AUTOMATED CONTOUR AUTOMATE AUTOMATE AUTOREGRESSIVE AVERAGE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL AVERAGE AVERAGE UNWEIGHTED AXIAL STRAIN AXIS AXIS DEPTH AXISL AZIMUTH METHOD AZIMUTH	133	BELL LABURATURIES
	MOVING AVERAGE MUDEL	16	BELL IH
143	AVERAGE	3	BENNETT ANDREW
143	AVERAGES UNWEIGHTED	102	BERGSTROM
30	AXIAL STRAIN	48	BERNINGHAUSEN WILLIAM
39	AXIS	58	BERUDE CATHERINE L
. 14	AXIS DEPTH	62	BERUDE CATHERINE L
126	AXISL	65	BERUDE CATHERINE L
103	AZIMUTH METHOD AZIMUTH	26	BEST DENNIS
111	AZIMUTH AZIMUTH AZIMUTH AZIMUTH AZIMUTH AZIMUTH AZIMUTHAL EQUIDISTANT PROJECTION AZIMUTHAL EQUIDISTANT PROJECTION	63	BEVERTON-HOLT YIELD EQUATION
109	AZIMUTH	63	BEVERTON R J H
112	ATIMUTH	64	BEVERTON R I H
112	AZIMUTH	65	REVERTON R I H
114	AZINOTH	124	DEACUON & A L
110	AZIMUTUAI FOUTDISTANT DEGIECTION	134	DETER WITH BICARTS ALVARIANTY
110	AZIMUTHAL EQUIDISTANT PROJECTION	. 22	DICARDUNATE ALKALINITE
113	BESO BESO	22	BILLO
22	B528	112	BILLS G
55	B&P EXTRACTION	133	BINGHAM C
50	BACKUS	15	BINOMIAL SMCOTHING
56	BAIT BOATS	67	BINOMIAL DISTRIBUTION
112	BALDINI REFRACTION MODEL	51	BICASSAY
131	BAND WIDTH	47	BIODAL SHIPBOARD LOGGING SYSTEM
127	BANDWIDTH	26	BIOLOGICAL OXYGEN DEMAND
116	BAR GRAPH	54	BIOM
25	BAR MIGRATION	54	BIOMASS
90	BARNETT	64	BICMASS
13	BARNEY WC LCDR		BIOMETRY
25	BAROMETRIC PRESSURE		BIRTLEY W THOMAS
· 82	BARRIENTES CELSO S		BISSET-BERMAN
40	BARRINGER PROTON MAGNETOMETER		BIT-REVERSING
3	BARRON JOHN L		
9	DAUVON STEIN F	134	BLACKY

93	BLATSTEIN IRA M BLISS KENNETH A BLUMBERG ALAN FRED BNDO FORMAT BNDO FORMAT BOD BOICOURT WILLIAM BCLTCN R M BOLTON R A BOLTON RCNALD BOLTON RCNALD M BOMM BCCMERANG CORER BORKOWSKI MARILYNN BORQUIN LARRY BCRTHWICK PATRICK W BGTIOM STRESS BOTTOM REFLECTIVITY BOTTOM REFLECTIVITY BOTTOM REFLECTION COEFFICIENTS BOTTOM TOPOGRAPHY BOX GEP BRACKISH WATER BRAINCON CURRENT METER BRAINCON CURRENT METER BRAINCON CURRENT METER BRAINCON CURRENT METER BRANCH D BRAY T BRILLOUIN BROWN MELVIN O BRUNT-VAISALA FREQUENCY BRUNT-VAISALA FREQUENCY BRUNT-VAISALA FREQUENCY BRUNT-VAISALA FREQUENCY BRUNT-VAISALA FREQUENCY BT BT BT BT BT PREDICTED BTGEOIV BTLISTC BULK WET DENSITY BUOYS SUBSURFACE BYRD WILLIAM E JR C 18 A 23 X C 18 A 23 X C 18 A 23 X	24	CARLE
13	BITC KENNETH A	24	CARLE
30	DEIGO ALAN EDED	20	CADLE
1 47	DEGREE ALAN FRED	31	CABLE
141	DNDG FORMAT	14	CABLE
147	DNUU FUKMA!	. 37	CABLE CONFIGURATION
20	BUD	37	CABLE LAW HEAVY GENERAL EAMES
28	BUICUURI WILLIAM	37	CABLE LAYING
111	BELTON R M	31	CABLE MULTI-STRAND
109	BOLTON R A	30	CABLE STRESS
110	BOLTON RONALD	30	CABLE TENSIONS
109	BOLTON RCNALD M	45	CAIN
134	BOMM	14	CALDWELL CS
34	BCCMERANG CORER	48	CALGON
124	BORKOWSKI MARILYNN	143	CALIBRATE REVERSING THERMOMETERS
112	BORQUIN LARRY	4	CALIBRATICN
51	BORTHWICK PATRICK W	12	CALIBRATION
82	BOTTOM STRESS	23	CALIBRATIONS OXIDATION POTENTIAL
94	BOTTOM REFLECTIVITY	83	CAMETELD FF
95	BOTTOM REFLECTION COFFEIGIENTS	112	CAMPRELL ANDREW
100	BOTTOM TOPOGRAPHY	114	CAMPRELLIS FOUNTIONS
15	BOUY AND E-EREQUENCY	150	CANADA
122	BOYCAR WINDOW	150	CANADIAN COHADEC
133	ROY GEP	152	CANADIAN SQUARES
22	BDACKICH MATED -	153	CANDO
76	PRAINCON CURRENT METER	133	CARORAN
70	DOATHOUN CORNEY METER	04	CARTILARY CRANTTY HAVE
145	DRAINCON DIA CHORENT METER	84	CAPILLARY-GRAVITY WAVE
142	BRAINCUN 3.16 CURRENT METER	_ ′	CAPRICORN
	BRANCH U	52	CARBUN 14
111	ERANCH D	22	CARBON DICXIDE
134	BRAY T	49	CARBON IN SEDIMENTS
73	BRILLOUIN	52	CARBON DIGXIDE DIURNAL MEASURES
138	BROWN MELVIN O	23	CARBONATE
8	BRUNT-VAISALA FREQUENCY	49	CARBONATE
16	BRUNT-VAISALA FREQUENCY	22	CARBONATE ALKALINITY
17	BRUNT-VAISALA FREQUENCY	52	CAROTENOIDS
14	BT	54	CAROTENGIO
17	BT	78	CARP
20	8T	78	CASDEC
90	BT PREDICTED	16	CAST
153	BTGEOIV	50	CATCH
153	BTLISTC	56	CATCH
48	BULK WET DENSITY	57	CATCH
32	BUOY	50	CATCU
35	RUOV DRIET	49	CATCH
27	BHOAC CHBCHBEYCE	63	CATCH CHRUE
40	DVDD HILLIAN C 10	02	CATCHE
40	C 10 A 10 V	23	CATIONS
4	C 18 A 18 X	126	CCFFT
4	C 18 A 23 X	126	CCCRR
4	C 18 A 32 X FQ		
	CO2 AND D.O. SAT	53	CELL SURFACE AREAS
22		_	CESLUJ
: 6		113	
	C44 TETA	50	CHANAT
	C46 SIGM2	62	CHAPMAN D C
30	CAB1	23	CHARGED SPECIES
	CABANA		CHART
30	CABLE		CHEAP JAMES C
32	CABLE		CHEM 80
33	CABLE		CHEMISTRY

28	CHEMISTRY ESTUARINE	2	CCLLINS C A
17	CHERMAK ANDREW	103	CGLLINS C A
28	CHESAPEAKE BAY	118	COLLINS C A
51	CHI-SQUARE	146	CCLLINS C A
62	CHI-SQUARE	25	COMPACTION OF SAMPLE
74	CHT-SOUARE	120	COMPACTION OF SAMPLE
126	CHI-COLLADE	120	COMPLEX DEMODULATES
137	CHIDD 7 - TRANSFORM	121	COMPLUI
141	CHEST	52	CUNCENTRATIONS
50	CERSPIT	91	CCNCENTRATION OF SEA ICE
55	CHLOR	143	CONCENTRATION AREAL
22	CHLORINITY	3	CCNDUCTIVITY
52	CHLOROPHYLL	7	CENDUCTIVITY
54	CHLOROPHYLL	18	CCNDUCTIVITY
55	CHLOROPHYLL	22	CENDUCTIVITY
112	CHOLESKY'S METHOD	22	CCNDECTIVITY
142	CHOLESKY'S METHOD	127	CONEID
22	CHRIST C	127	CCNEID 1
20	CHRSEC	124	CONSTRUCT INTERNALS
25	CHIBCH M C	120	CONFIDENCE INTERVALS
00	CHURCH M C	127	CUNFIDENCE INTERVALS
1/0	CHURCH ALAN II	130	CUNFIDENCE INTERVALS
148	CHUKCH ALAN W	129	CONFIDENCE LEVEL
109	CIRAZD	131	CONFIDENCE REGIONS
29	CIRCULATION ESTUARINE	99	CCNGRATS
25	CIRCULATION IN ESTUARY	122	CCNIC PROJECTION
24	CIRCULATION MODEL-ESTUARINE	127	CCNMODE
16	CLAMONS JIDEAN	39	CCNNARD G
109	CLAMONS J DEAN	40	CCNNARD G
14	CLARITY	25	CONCEDUATION OF SALT
56	CLARK R D	رے ،	CONCICTENCY CHECK
136	CLASSIFIFATION CHI_SOHABES	4	CCNCOLIDATION
48	CHEMISTRY ESTUARINE CHERMAK ANDREW CHESAPEAKE BAY CHI-SQUARE CHI-SQUARE CHI-SQUARE CHI-SQUARE CHIPZ - TRANSFORM CHKSPIT CHLOR CHLORINITY CHLOROPHYLL CHLOROPHYLL CHLOROPHYLL CHLOROPHYLL CHOLESKY'S METHOD CHOLESKY'S METHOD CHOLESKY'S METHOD CHURCH M C CHURCH M C CHURCH ALAN W CIRAZD CIRCULATION ESTUARINE CIRCULATION IN ESTUARY CIRCULATION MODEL-ESTUARINE CLAMONS J DEAN CLAMITY CLARK R D CLASSIFICATION CHI-SQUARES CLAY CLAYSCN CATHERINE	49	CENSULIDATION
37	CLAVCEN CATHEOTHE	31	CCNSTRAINTS END
37	CLATSEN CATHERINE	. 70	CONTINGENCY TABLE
145	CLEJL	71	CONTINGENCY TABLE
87	CLIMATULUGY	99	CCNTINUOUS GRADIENT
145	CLASSIFICATION CHI-SQUARES CLAY CLAYSCN CATHERINE CLEJL CLIMATOLOGY CLJNL CLOCK CURRENT METER CLCUD COVER CLUPEID STOCKS CLUSTER ANALYSIS CLUSTERING CYCLEE	101	CONTINUOUS GRADIENT
77	CLOCK CURRENT METER	42	CCNTOUR CROSSING INTERVALS
90	CLCUD COVER	100	CENTOUR PLOTS
63	CLUPEID STOCKS	121	CONTOUR (CHARTS
136	CLUSTER ANALYSIS	123	CONTOURS VERTICAL ANALYSIS
136	CLUSTERING CYCLEE		TEMPERATURE AND SALINITY
20	CLUSTERING CYCLEE CMXSPC CNDNSDTA CCAN ATILIO L JR CGASTAL CURRENTS CCASTAL UPWELLING	134	CCNTOUR PLOTTING
74	CNDNSDTA	14	CCNTRAST LOSS
56	CCAN ATILIC L JR	38	CCNVEC
75	COASTAL CURRENTS	38	CCNVECTION IN VARIABLE VISCOSITY
28	CCASTAL UPWELLING	30	
93	CCATE M M		FLUID
118	CCDC FORMAT MEDS FORMAT	95	CCNVERGENCE ZONE
		100	CCNVERGENCE INTERVAL
146	CODC FORMAT MEDS FORMAT	151	CCNVERSICN
152	CCDCCGNV	128	CCNVOLUTION
99	CCHEN J S	135	COOLEY
134	COHERENCE	133	CCCLEX 1 M
127	CCHERENCY	130	COOLEY-TUKEY FAST FOURIER TRANSFORM
130	COHERENCE ESTIMATES PLOT	67	CCCLEY WILLIAM W
127	CCHPLT	106	COORDINATE TRANSFORMATION
95	CCLE DONALD	107	CORBT
146	CCLLIAS EUGENE E	49	CCRE
115	COLLIGAN EQUAL AREA PROJECTION	33	CORER BOOMERANG
	OF THE SPHERE	35	CORER DYNAMICS
1	CCLLINS C A	33	CERMORAN
_	•		January Comment

```
101 CORNYN JOHN J JR
98 CCRRECTICN RATIO
91 CURRENT MCNTHLY SURFACE
135 CGSINE FOURIER TRANSFORM
132 COSINE WINDOW
135 COSPECTRA
136 CGSPECTRA
137 COSPECTRUM
138 COSPECTRUM
139 COSPECTRUM
140 CURRENT SURFACE
151 COSPECTRUM
152 CURRENT VELOCITY
153 COSPECTRUM
154 CURRENT
155 COSPECTRUM
155 COSPECTRUM
156 CURRENT
157 COSPECTRUM
157 COSPECTRUM
158 CURRENTS
158 CURRENTS
```

```
40 DECCA DATA LOGGER
40 DECCA HIFIX
40 DECCA MAIN CHAIN MK21 RECEIVER
1 DEEP
1 DEEP
1 DISCRETE COSINE TRANSFORM
1 DISCRETE FOURIER TRANSFORM
1 DISCRETE SINE TRANSFORM
                                                                                                                                                                                                                                                                          136 DISCRIMINANT FUNCTION
      120 DEEP 6
                                                                                                                                                                                                                          16 DISPER
15 DISPERSION CURVES
25 DISPERSION LONGITUDINAL
17 DISPERSION RELATIONS
76 DISPLA
      107 DEGFR
107 DEGREE - MINUTE CONVERSION
     113 CEGREE - SECOND CONVERSION
6 DELTA-ALPHA
7 DELTA-ALPHA
                                                                                                                                                                                                               JO DISPLACEMENT

76 DISPLACEMENT WATER

45 DISPLOT

73 DISSIMILARITY COEFFICIENTS

22 DISSOLVED OXYGEN

26 DISSOLVED OXYGEN

28 DISSOLVED OXYGEN

146 DISSOLVED OXYGEN

109 DISTANCE

53 DISTRIBUTION

50 DISTRIBUTION SPECIES

52 DIURNAL MEASURES
                  2 DELTA-D
                  7 DELTA-D
            25 DELTA DEVELOPMENT
6 DELTA-ST
5 DELTA-T
  107 DEMI
128 CEMOD 1
128 DEMOD 2
128 DEMOD 3
116 DENDROGRAPH
80 DENNIS R E
123 DENNIS ROBERT
142 DENNIS ROBERT
144 DENNIS ROBERT
13 DENSITY
16 DENSITY
17 DENSITY
23 DENSITY
25 DENSITY CURRENTS
       107 DEMI
                                                                                                                                                                                                                                                                     DISTRIBUTION SPECT DIURNAL MEASURES DIVERSITY
                                                                                                                                                                                                                                 52 DIVERSITY
54 DIVERSITY
73 DIVERSITY COMMUNITY
55 DIVERSITY SPECIES
DIVERSITY COMMUNI

55 DIVERSITY SPECIES

42 DLIST

42 DLIST

1 DENSITY PROFILE

107 DMRCT

15 DENSITY PROFILE

20 DMSCHP

120 DENTON DIANNA L

1 DEPTH

6 DEPTH

152 DEPTH

152 DEPTH

155 DEPTHBO

4 DEPTH ANOMALY DYNAMIC

5 DEPTH ANOMALY DYNAMIC

97 DEPTH CORRECTION FOR SOUND VEL

20 DRIVE

126 DETREND

127 DETREND

128 DETREND
                                                                                                                                                                                                                                                                               75 DRIFT
76 DRIFT
74 DRIFT BOTTLE
91 DRIFT ICE
     20 DERIVE
146 DETAIL
128 DETREND
128 DETREND
  128 DETREND
128 DETREND
135 DETRND
135 DETRND
135 DETRND
136 DEVANNEY J W III
137 DEVANNEY J W III
138 DEVANNEY J W III
139 DEVANNEY J W III
140 DEVANNEY J W III
151 DEVANNEY J W III
152 DEVANNEY J W III
153 DEVAND
154 DEVAND
155 DEVAND
156 DEVAND
157 DEVAND
158 DEVAND
159 DEVAND
159 DEVAND
150 DEVAND
151 DEVAND
152 DISCHARGE
153 DEVAND
154 DEVAND
155 DEVAND
156 DEVAND
157 DEVAND
158 DEVAND
159 DEVAND
159 DEVAND
150 DEVAND
150 DEVAND
151 DEVAND
152 DEVAND
153 DEVAND
154 DEVAND
155 DEVAND
156 DEVAND
157 DEVAND
158 DEVAND
159 DEVAND
159 DEVAND
150 DEVAND
15
```

	DVR 10 DVRSTY DYANOM DYE PATCH MOVEMENTS DYGYT DYNAMIC DEPTH DYNAMIC DEPTH ANGMALY DYNAMIC DEPTH ANGMALY DYNAMIC HEIGHT DYNAMIC STRESS RESPONSE DYNAMIC STRESS RESPONSE DYNAMIC TENSION DYNAMICAL FIELDS DYNAMICS ESTUARINE DYNHT DYRSSEN EAMES M.C.		
124	DVR 10	20	EMPEIGU
55	DVRSTY	31	END CONSTRAINTS
18	DYANOM	31	END MOMENT
25	DYE PATCH MOVEMENTS	31	END RESPONSES
46	DYGYT	31	END ROTATION
6	DYNAMIC DEPTH	1	ENERGY ANDMALY POTENTIAL
4	DYNAMIC DEPTH ANGMALY		ENERGY POTENTIAL
18	DYNANIC DEPTH ANGMALY	25	ENERGY WAVE AND CHRRENT
1	DYNAMIC HEIGHT	01	ENERGY ELLIYES
7	DYNAMIC HEIGHT	120	ENEDGY CDECTOIN
à	DYNAMIC HEIGHT	40	ENGINEERING INDEX OF CORE SAMPLES
Ğ	DVNAMIC HEIGHT	40	ENCOARTE CTOCKS
12	DVNANIC HEICHT	100	ENGRAPHIC STOCKS
16	DANYMIC HEIGHT	130	ENUKMSEP
14	OVNAMIC HEIGHT AMORALM	146	ENVIR
20	DVNAMIC REIGHT ANUMALT	13	ENVIRUNMENTAL DYNAMICS
20	DINAMIC SIRESS RESPUNSE	91	ENVIRONMENTAL CHANGES EFFECT CN
30	DYNAMIC TENSION		SEA ICE
20	DYNAMICAL FIELDS	39	ECTVOS CARRECTION
29	DYNAMICS ESTUARINE	43	ECTVOS CORRECTION
9	DYNHT	44	ECTVOS CORRECTION
22	DYRSSEN EAMES M.C	45	ECTVOS CORRECTION
37	EAMES M C	89	EPPLEY PYRHELIOMETER
100	EARTH CURVATURE CORRECTIONS	115	EQUAL AREA SINUSOIDAL PROJECTION
39	EARTH MODELS	69	EQUALITY OF MEANS TEST
109	EARTH SPHERICAL	58	EQUILIBRIUM APPROXIMATION
106	EARTH SPHERICAL SUBROUTINES	54	EQUILIBRIUM YIELD
39	EARTHQUAKES MIGRO	25	EROSION BEACH
82	DYRSSEN EAMES M C EARTH CURVATURE CORRECTIONS EARTH MODELS EARTH SPHERICAL EARTH SPHERICAL SUBROUTINES EARTHQUAKES MIGRO EAST COAST STORM SURGE EATON A D EBRPLT ECOPROD ECOSTAT EODY EDIST EDIT EDIT EDITQ ECO-WESTERN PRECISION DEPTH RCDR	106	ESTC2
52	EATON A D	106	FSTCH
123	FRRPLT	12	ESTON
52	FCOPROD	106	ESTRI
73	FCDSTAT	100	ECTIADV
20	EDDA	24	ESTUART
2 5 0 E	EDICT	24	ESTUART COTURN
7.4	CDIT	20	ESTUARY
144	EDIA	21	EULEK METHOU
140	COITO	31	EULER METHOD
148	EDG MEGTERN BREGGER BERTH BERTH	63	EUMETRIC YIELD
40	ECO-WESTERN PRECISION DEPTH RCDR	128	EUREKA
52	EFFICIENCY	128	EUREKA
57	EFFORT	111	EUROPEAN DATUM
23	EFFICIENCY EFFICIENCY EFFORT EH VALUES EIGEN FUNCTIONS EIGEN FUNCTIONS EIGEN FUNCTIONS EIGEN RAYS EIGEN VALUES EIGENVALUES	90	EVAPORATIVE HEAT EXCHANGE
15	EIGEN FUNCTIONS	113	EXCES
17	EIGEN FUNCTIONS	31	EXCITATION
20	EIGEN FUNCTIONS	34	EXCITATION BY CURRENTS
99	EIGEN RAYS	36	EXCITATION STROUHAL
20	EIGEN VALUES	151	EXPENDABLE BATHYTHERMOGRAPH -
15	EIGENVALUES		SEE ALSO XBT
20	EIGENVALUE	128	
93	EIGENVALUES		EXSMO
20	EIGENVECTORS ORTHOGONAL		EXTENDED NORMAL SEPARATOR
	EINSTEIN L T	7	F3
	EKMAN CURRENT METER		FAA PLOT
1	EKMAN TRANSPORT	_	FAGER E W
_	EKMAN VW		FARRELL J
	ELASTICITY CABLE		FASD
	ELECTRO MEGHANICAL CABLE		FASHAM M
	ELEUTER BUS	_	FASHAM M
	ELONGATION		FAST FIELD
	EM LOG		FAST FOURIER TRANSFORM
		120	THE TOURIER TRANSFORM

126	FAST FOURIER TRANSFORM	87	FLUX EVAPORATIVE
128	FAST FOURIER TRANSFORM	28	FLUX TABLES
131	EAST FOURTER TRANSFORM	20	FLUXES METEGROLOGICAL
135	FAST FOURIER TRANSFORM FAST FOURIER TRANSFORM FAST FOURIER TRANSFORM FAST FOURIER TRANSFORM FATHCR FATHOM FATHOM FATHOMETER FAUNAL BREAKS FECHER MICHAEL FEE EVERETT J FEEDBACK CCEAN—ATMOSPHERE FFIN	91	FLUXES ENERGY
47	EATHOD	102	ENUC
42	FATUON	102	ECECHICES.
43	FATHUM	9	FUFUNUFF
44	FAIHUM	11	FCFUNDFF
47	FATHCMETER	16	FCFONOFF
50	FAUNAL BREAKS	1	FCFONOFF NP
16	FECHER MICHAEL	10	FCFONOFF NP
135	FEE EVERETT J	129	FGLD
88	FEEDBACK CCFAN-ATMOSPHERE	38	ECLK GRAPHIC MEASURES
128	FFIN	86	FCRCE
34	FFT	132	FORECAST
78	CCT	1 27	FOR FOACT THE AUTORECRECTUE
	FFI	121	FORECASTING AUTOREGRESSIVE
125	FFT		INTEGRATED MOVING AVG MODELS
128	FFTCNC	91	FORECASTS ICE
128	FFTCNV	14	FOREL-ULE SCALE
128	FFTPS	149	FOREMAN
128	FFTS	113	FORWARD POSITION COMPUTATION
128	EETSPC	12	INTEGRATED MOVING AVG MODELS FORECASTS ICE FOREL-ULE SCALE FOREMAN FORWARD POSITION COMPUTATION FOURIER SERIES
72	FICKIAN DIFFUSION FOUNTION	25	ECHOTED SEDIES
120	ETITED	120	ECHOTED TOANCEODM
127	FILEN	129	FOURIER // RANSFORM
130	FILIEK	85	FCURTR
128	FILIER I	129	FOURTR
134	FILTER ARBITRARY	135	FCURTR
129	FILTER DESIGN	129	FGUSPC
128	FFTSPC FICKIAN DIFFUSION EQUATION FILTER FILTER FILTER 1 FILTER ARBITRARY FILTER DESIGN FILTERS NCN-RECURSIVE DIGITAL FINDLAY D J FINITE-DIFFERENCE FOLIATION	129	FOUSPC 1
111	FINDLAY D J	129	FOUSPC 2
25	FINDLAY D J FINITE-DIFFERENCE EQUATION FINITE DIFFERENCE FINITE ELEMENT SCHEME FINITE DIFFERENCE FINN EDWARD J FINNEY DJ FISHER'S EXACT TEST FISHER'S DISTRIBUTION FISZ MAREK FITIT FITZGERALD JAMES W FIVE T'S METHOD FIVET FIXED THIN LINE ARRAY	110	FCX KAY
24	FINITE DIFFERENCE	117	FOX WILLIAM T
28	FINITE CIEMENT SCHEME	25	ECV NILLIAM T
02	CINITE DISCEPENCE	20	SON HILLIAM T
25	FINITE DIFFERENCE	29	FOX WILLIAM I
32	FINN EDWARD J	51	FUX WILLIAM W JR
51	FINNEY DJ	58	FOX WILLIAM W JR
70	FISHER'S EXACT TEST	121	FRAME
106	FISHER'S DISTRIBUTION	45	FREE AIR ANCMALY
133	FISZ MAREK	128	FREE FORM INPUT
94	FITIT	151	FREEMAN
89	ETTZGERALD JAMES W	153	FREEMAN FIMER
128	FIVE TIS METHOD	68	EPECHENCY DISTRIBUTION
128	FIVET	110	EDECHENCY DISTRIBUTION DIOT
26	ETYCH THIN LINE ADDAY	119	FREQUENCY DOWNER TECT
27	FIXED THIN LINE ARRAY	129	FREQUENCY DUMAIN 1831
34	FIXED THIN LINE ARRAY DYNAMICS	131	FREQUENCY DOMAIN TEST
151	FLANAGAN MICHAEL	129	FREQUENCY RESPONSE OF FILTER
153	FLANAGAN MICHAEL	28	FRESHWATER INFLOW
103	FLAT POLAR EQUAL AREA SINUSOIDAL	129	FRESPON
	PROJECTION	1	FROESE CHARLOTTE
115	FLAT POLAR EQUAL AREA SINUSOIDAL	10	FRCESE CHARLOTTE
	PROJECTION	18	FS
102	FLEMING H	50	FTAPE
91	FLIP		
50		106	FUEL CONSUMPTION
	FLISHT	24	FULLER ALAN J
84	FLOOD LEVELS	22	FULTON PATRICIA A
26	FLOW	85	G1 BE TISR
85	FLOW VELCCITIES	129	GAIN
	VERTICAL/HORIZONTAL	80	GAINER THOMAS H JR
54	FLUORESC ENCE	43	GAL
87	FLUX CONDUCTIVE	45	GAL
-			

28	GALERKIN WEIGHTED RESIDUAL	13	GECSTROPHIC CURRENT
55	CALEC 1 E	1	GEOSTROPHIC TRANSPORT
2	CALES L E		GEOSTROPHIC TRANSPORT
62	GALES LAWKENCE E	9	GEOSTROPHIC VELOCITY
63	GALES L E	10	GEOSTROPHIC VELOCITY
64	GALES LAWRENCE E	83	GECSTROPHIC WIND
66	GALES LAWRENCE E	105	GEPOS
29	CAMA DE ALMETOA EMMANUEL	5	GIESE .04
23	CANA DE ACHEIDA EMMANOEL	5	011150015 15116015 5
43	GAMMA	22	GILLESPIE LEILONIE D
45	GAMMA	73	GLEASON
129	GAPH	76	GLEASON ROBERT R
92	GARCIA LT ROLAND A U S N	39	GLIB
112	GARFINKEL REFRACTION MODEL	112	GMLIC
22	CARDELC D M	310	GNEMONIC PROJECTION
22	CARRETT T	110	CONTROL PROJECTION
95	GARRETT I A	100	GODFREY N
96	GARRETT T.A	22	GODFREY PAUL J
149	GAS	54	GCDFREY PAUL J
150	GAS	143	GODFREY PAUL J
150	GAS VASIIM	127	GOERTZEL S METHOD
151	CACD	120	GOERTZEL'S METHOD
121	CACCCT	120	GOEKIZEL'S METHOD
150	GASCUI	54	GOLDMAN .C .R
150	GASDIPBS	138	GGLDSTEIN
150	GASEINV	142	GOLDSTEIN MARVIN J
150	GASMASK	87	GOOD A J
150	CASORDER	12	GCCD A J
150	CACCANDO	151	CORDON 4
150	GASSAMEC	121	GORDON J
150	GASTHERM	78	GORDON JEFFREY
150	GASVAPRT	76	GGSSNER LCDR JOHN
114	GAUSS MID-LATITUDE METHOD	145	GEULD W J
17	GAUSSIAN METHODS THERMOCLINE	25	GRAIN SIZE
	ANALYCEC	20	GRAIN SIZE
04	GALERKIN WEIGHTED RESIDUAL GALES L E GALES LAWRENCE E GALES LAWRENCE E GALES LAWRENCE E GALES LAWRENCE E GAMA DE ALMEIDA EMMANUEL GAMMA GAMMA GAPH GARCIA LT ROLAND A U S N GARFINKEL REFRACTION MODEL GARRELS R M GARRETT T A GAS GAS GAS VASUM GASB GASCCI GASDIPBS GASCINV GASMASK GASORDER GASSAMPC GASTHERM GASVAPRT GAUSS MID-LATITUDE METHOD GAUSSIAN METHODS THERMOCLINE ANALYSIS GBEAM GCIRC GEAR GEAR GELEI GEMDERLE M GEMMILL W H GEMMILL W H GEMPERLE M GEMER 1 GENER 2 GENER 3 GEODATA GEODETIC DATUM CONVERSION	 	CDAIN CITE
94	GDEAM	40	GRAIN SIZE
117	GGIRC	22	GRAM PLOT METHOD
56	GEAR	133	GRANGER C W J
59	GEAR	2	GRANT AB
83	GELEI	120	GRAPH 2
40	GEMDERIE M	116	GRAPH BAR
89	CEMMIII W U	100	CDACC
	CEMPTAL WAS	100	GRASS
90	GEMMILL W H	13	GRAV
39	GEMPERLE M	13	GRAVITY
129	GENER 1	38	GRAVITY
129	GENER 2	39	GRAVITY
129	GENER 3	40	GRAVITY
47	GENNATA	41	GRAVITY
111	GEODETIC DATUM CONVERSION GEODETIC DATUM REDUCTION GEODETIC DISTANCE	7.5	GRAVITY
111	GEODETIC DATUM CONVEXTON	(, 	GRAVITY
111	GEUDETIC DATUM REDUCTION	46	GRAVITY
104	GEODETIC DISTANCE	145	GRAVITY
113	GEODETIC DISTANCE AND AZIMUTH	146	GRAVITY VARIATIONS
111	GEODETIC POSITION	111	GRAY BARBARA
113	GEODETIC POSITION	106	GREAT CIRCLE
114	GEODETIC POSITION	115	GREAT CIRCLE
_		_	
77	GECDYNE 850 CURRENT METER	52	GREEN LINDA S
78	GEODYNE 850 CURRENT METER	79	GREGORY DCNG
77	GECDYNE MKIII CURRENT METER	103	GRID PLOT
77	GEODYNE OPTICAL CURRENT METER	121	GRIDIT
47	GEOFILE	153	GRIDSQ
5	· -	33	GRIFFIN GARY T
	GECMASS		=
145	GEOPHYSICAL DATA REDUCTION	34	GRIFFIN GARY T
14	GEOPOTENTIAL ANOMALIES	35	GRIFFIN GARY T
2	GEOPOTENTIAL ANOMALY	75	GRIFFIN GARY T

```
41 GRIM PAUL J
                                                 99 HERSTEIN PETER D
                                                121 HERSTEIN PETER D
125 HERSTEIN PETER D
   45 GRIM PAUL J
 41 GROMAN ROBERT C
97 GROMAN ROBERT C
119 GROMAN ROBERT C
120 GROMAN ROBERT C
                                                3 HEWLETT-PACKARD DATA LOGGER
40 HIFIX
113 HIFIX
GROMAN ROBERT C
L20 GROMAN ROBERT C
17 GROSFILS ERIC F
 2. GROSTILS ERIC F
136 GROUP MEMBERSHIP PROBABILITIES
136 GROWTH
137 GROWTH
138 HISTO
  HELMS HOWARD D
47 HERSTEIN PETER D
```

45	IGRF ILLUMINAMETER	2	JONES JAMES H
14	ILLUMINAMETER	13	JONES JAMES F
32	IMAGINARY REACTIONS	102	JONES M
35	IMPACT VELOCITY	30	JGYNER W B
150	TAIDATA	1.66	JULDAY
150	INDATA	144	JULDAT
111	INCIVIDUAL PUINT GENERATUR	144	JULIAN
93	ILLUMINAMETER IMAGINARY REACTIONS IMPACT VELOCITY INDATA INCIVIDUAL POINT GENERATOR INGENITO	144	JULIAN DATE CONVERSIONS
26	INLETS DISCHARGE AND WATER LEVEL	144	JULSEC
38	INMAN GRAPHIC MEASURES	144	JULYAN
128	INPUT FREE FORM	22	K
143	INTEGRATE	68	KALMOGOROV-SMIRNOV STATISTIC
137	INTEGRATION SINGLE	117	KAN DENNIS I O
100	INTENSITIES DANDOM COMEDENT	03	KANARIS WILLIAM C
100	AND CTATICTICAL	95	VADIAN DEDDERT C
	ANU STATISTICAL	90	NAPLAN RENDER! 3
142	INTERACTIVE CALCULATIONS	99	KASIK KUNALU P
16	INTERNAL GRAVITY WAVES	39	KEELING K
17	INGENITU INLETS DISCHARGE AND WATER LEVEL INMAN GRAPHIC MEASURES INPUT FREE FORM INTEGRATE INTEGRATION SINGLE INTENSITIES RANDOM COHERENT AND STATISTICAL INTERACTIVE CALCULATIONS INTERNAL GRAVITY WAVES INTERNAL WAVE OSCILLATIONS INTERNAL WAVES INTERCEAN TYPE II CURRENT METER INTERP2 INTERPOLATION	40	KEELING K
15	INTERNAL WAVES	3	KENNEDY INCREMENTAL RECORDER
76	INTEROCEAN TYPE II CURRENT METER	22	KEOKOSKY ELIZABETH
6	INTERPI	54	KECKOSKY ELIZABETH
4	INTERRO	143	KECKCSKY ELIZABETH
,	INTERROLATION	150	KEUL CADV
*	INTERPOLATION	150	KEULL CARV
2	INTERPULATION	151	KEULL GART
6	INTERPULATION	5	KETTE
7	INTERPOLATION	138	KEYIE F K
16	INTERPOLATION	143	KEYTE F K
18	INTERPOLATION	7	KILMER
20	INTERPOLATION	29	KINEMATICS ESTUARINE
7	INTERPOLATION LAGRANGIAN	102	KLERER M
7	INTERPOLATION LINEAR	91	KNODLE
6	INTERNAL WAVES INTEROCEAN TYPE II CURRENT METER INTERP1 INTERP2 INTERPOLATION LAGRANGIAN INTERPOLATION LINEAR INTERPOLATION POLYNOMIAL INVENTORIES INVENTORIES INVENTORY INVERSE POSITION INVERSE TRANSFORM INVERSIONS INVREJ ICN COMPLEXES ICN PAIRS IGNIC CONDUCTANCE IREDALE HARRY IRMINGER SEA PROJECT IRVINE KENNETH M ISENTROPIC INTERPOLATION ISENTROPIC LEVELS ISC—LOSS CONTOURS ISOMETRIC PLOTS	10	KNUDSEN
147	INVENTORIES	13	KNUDSEN
150	INVENTORIES	53	KOVALA PAAVO F
151	INVENTORY	48	KDAVITZ ICSEPH
116	INVENEUR DOCITION	20	KOAVITZ JOSEOU
114	INVERSE PUBLITUM	70	MONEYAL DIALLIC TECT
178	INVERSE TRANSFURM	70	KRUSKAL-WALLIS (ES)
17	INVERSIONS	38	KUK10313
15	INVREJ	135	1101
23	ICN COMPLEXES	12	L-Z CURVE
23	ICN PAIRS	16	L-Z GRAPH
22	IGNIC CONDUCTANCE	146	L-Z TABLE SMOOTHING
138	IREDALE HARRY	13	LA FOND
79	IRMINGER SEA PROJECT	50	LACKEY ROBERT T
91	IRVINE KENNETH M	56	LACKEY ROBERT T
18	ISENTROPIC INTERPOLATION	57	LACKEY ROBERT T
16	ISENTAGRIC LEVELS	136	I ACKEY DOBERT T
10	ISC-LOSS CONTOURS	40	LACOSTE AND ROMBERG SHIPBGRNE
99	TOUTED TO DE OTO	70	COAVITY METER
***	200112111120 1 2010		
20	IWEG	46	
54	JASSBY A D	24	
44	JDAYWK	72	
133	JENKINS G M	75	· · · · · · · · · · · · · · · · · · ·
51	JENSEN A L	76	LAEVASTU TAIVO
52	JOB	88	LAEVASTU TAIVO
153	JCHNSON PEARL	89	ŁAEVASTU TAIVO
19	JCHNSON RALPH		LAEVASTU TAIVO
115	JCHNSON RALPH		LAEVASTU TAIVO
39	JCHNSON S H		LAG. WINDOW
47	JCHNSTON LARRY	132	LAG WINDOW
71			PUA ATIEMON
	•	•	

1/1	LAG3PT LAGRANGIAN POLYNOMIAL LAGRANGIAN INTERPOLATION LAKE MICHIGAN LAKES LAMB LAMBERT AZIMUTHAL EQUAL AREA POLAR PROJECTION LAMBERT CONIC CONFORMAL PROJECTION LAMBERT CONIC CONFORMAL PROJECTION LAMBERT CONFORMAL CONIC PROJECTION LAMBERT CONFORMAL PROJECTION LAMBERT CONFORMAL PROJECTION LAMBERT EQUAL AREA CYLINDRICAL PROJECTION LAMBERT EQUAL AREA CYLINDRICAL PROJECTION LAMBERT EQUAL AREA CYLINDRICAL PROJECTION	7.	A CELLAY CARREDO
141 16	LACDANCIAN DOLVNOSTAL	76	LEEWAY FACTURS
141	LAGRANGIAN PULTNUMIAL	94	LEIBIGER GUSTAVE A
	LAKE MICHIGAN	20	LENARZ WIGLIAM H
54	LAKE MICHIGAN	20	LENERE
	LAKES	85	LENGI
111	LAMBERT AZIMUTUAL FOULL ADEA	59	LENGTH-FREQUENCY
110	LAMBERT AZIMUTHAL EQUAL AREA	56	LENGTH FREQUENCY ANALYSIS
	PULAR PRUJECTIUN	58	LENGTH-FREQUENCY DISTRIBUTION
103	EAMBERT CENTE CONFORMAL	58	LENGTH
	PROJECTION	13	LERUY
109	LAMBERT CONIC CONFORMAL	100	LEROY
	PROJECTION	61	LEVATIN JC ANNE
110	LAMBERT CONFORMAL CONIC	63	LEVATIN JO ANNE
	PRCJECTICN	133	LEVINSON N
122	LAMBERT CONFORMAL PROJECTION	133	LEWIS PAW
103	LAMBERT EQUAL AREA CYLINDRICAL	34	LEWIS' DIMENSIONLESS RAC'S
	PROJECTION	30	LIFTING LINES
110	LAMBERT EQUAL AREA CYLINDRICAL	98	LIGHT AND SOUND INSTRUCTION B
	PROJECTION	95	LIGHT AND SCUND INSTRUCTION D
115	LAMBERT EQUAL AREA CYLINDRICAL	136	LIKELIHOOD ESTIMATES
	PROJECTION	42	LIMITS
115	LAMBERT EQUAL AREA POLAR	135	LINDSEY J K
	PROJECTION	120	LINE PRINTER PLOTS
112	LAMBERT PROJECTION	138	LINEAR REGRESSION
132	LANCZOS DATA WINDOW	65	LINEAR REGRESSION ANALYSIS
132	LANCZOS-SQUARED DATA WINDOW	66	LINEAR REGRESSION ANALYSIS
56	LAMBERT EQUAL AREA CYLINDRICAL PROJECTION LAMBERT PROJECTION LAMBERT PROJECTION LAMCZOS DATA WINCOW LANCZOS SQUARED DATA WINDOW LANCIOS—SQUARED DATA WINDOW LANDINGS LANDISMAN LAPLACIAN RELAXATION LAPLACIAN RELAXATION LAPLACIAN RELAXATION LARRANCE JERRY D LARSON SE LARSON SIGURD LARSON SIGURD LARSON SIGURD LATIMORE RK LATTIMORE RK LAURCH DRIFT BOTTLE LAURENT ANDRE G LAVELLE J W LAVELLE J W LAVELLE J W LAVELLE J W	128	LINEAR TREND
38	LANDISMAN	30	LINES LIFTING
17	LAPLACIAN RELAXATION	31	LINES MOCRING
87	LAPLACIAN RELAXATION	141	LININT
88	LAPLACIAN RELAXATION	48	LIQUID LIMIT
53	LARRANCE JERRY D	118	LISPLO
17	LARSON SE	44	LISTP
83	LARSON SIGURD	31	LIU CL
84	LARSON SIGURD	31	LIU FRANCIS C
88	LARSON SIGURD	30	LOAD HANDLING
150	LATLON 80	32	LOAD HOTEL
42	LATTIMORE RK	30	LOAD MOTION
43	LATTIMORE RK	65	LOGISTICS SCHAFFER MODEL
44	LATTIMORE RK	129	LCGPLT
45	LATTIMORE RK	80	LCNG EE
46	LATTIMORE RK	84	LCNG STEVEN R
94	LAUER RICHARD B.	51	LCNGLEY WILLIAM
74	LAUNCH DRIFT BOTTLE	52	LCNGLEY WILLIAM
62	LAURENT ANDRE G	56	LCNGLINERS
42	LAVELLE J W	67	LCNNES PAUL R
46	LAVELLE J W	112	LORAC
16	LAVOIE R	104	LGRAN
125	LAWRENCE D J	106	LORAN
89	LAZANOFF SM	109	LORAN
128	LEAST SQUARE FILTERING	112	LCRAN
94	LEAST SQUARED ERROR	114	LORAN
20	LEAST SQUARES	105	LORAN CONVERSION
58	LEAST SQUARES	110	LCRAN CONVERSION
146	LEAST SQUARES CURVE FIT	114	LGRAN CONVERSION
138	LEAST SQUARES CURVE FITTING	110	
149	LEAST SQUARES FIT	100	LCSSPLOT
138	LEAST SQUARES DISTANCE HYPERPLANE	44	·
138	LEAST SQUARES PLOT	106	LRFIX

```
122 MAPPLT 107 MERCATOR
52 MARGALEF 108 MERCATOR
73 MARGALEF 119 MERCATOR
20 MARK II CYCLESONDE 121 MERCATOR
59 MARKET MEASUREMENT 122 MERCATOR
72 MARKOV WIND MODEL 124 MERCATOR
87 MARKOV WIND MODEL 108 MERCATOR DIGITIZATION
40 MARQUART DOPPLER SONAR 2015A 105 MERCATOR GRID
```

	MERCATOR PROJECTION MERCATOR SEE ALSO TRANSVERSE MERCATOR AND OBLIQUE MERCATOR MERCATOR TRANSVERSE PROJECTION MERICATOR TRANSVERSE PROJECTION MERICATOR TRANSVERSE PROJECTION MERICATOR TRANSVERSE PROJECTION MERICATOR TRANSVERSE PROJECTION MERICATIC VARIATES MET FLX MEXICO GULF OF MFIELD MGEAR NEHTON-RAPHSON APPROXIMATION MICHIGAN LAKE MICRO TECHNICA GYROCOMPASS MICROFILM PLOTS MICROFILM PLOTS MICROFILM PLOTS MILER FORREST MILLER FORREST MILLER PROJECTION MILLER PROJECTION MINLER PROJECTION MINIMA REJECTION MINIMA REJECTION MINIMA REJECTION MISSION SCENARIO MISSION SCENARIO MISSION SCENARIO MISSION RADIUS MIXED LAYER MIXED LAYER DEPTH ANALYSIS MK2CAL MK448 TORPEDC ACOUSTICS MOBLEY CURTIS MODE ENHANCEMENT MODE SHAPES MODEL COASTAL UPWELLING MODEL COASTAL UPWELLOR MODEL COAST		
110	MERCATOR PROJECTION	106	MOORE MICHAEL
115	MERCATOR PROJECTION	107	MCCRE MICHAEL
109	MERCATOR SEE ALSO TRANSVERSE	142	MODRE MICHAEL
107	MEDIATOR AND ORITORE MEDIATOR	145	MCORE MICHAEL
122	MEDICATION AND UDITION MERCATOR	140	MCCKE MICHAEL
122	MERCATUR TRANSVERSE PROJECTION	34	MUURING
1	MERIDIONAL TRANSPORT	35	MOORING
68	MERISTIC VARIATES	18	MCRAWSKI WALTER
20	MET FLX	20	MORAWSKI WALTER
80	MEXICO GULF OF	150	MORAWSKI WALTER
41	METELD	150	MCDAWSKT WALTED
5.6	MCEAD	151	NODALICKT WALTED
17	NEUTON-DADUCON ADDDOVZNATZON	131	MODICUINA TO
11	NEWTON-KAPHSON APPROXIMATION	21	MURISHIMA 'U L
19	MICHELSENS CUNTAINER DATA	51	MURIALITY
25	MICHIGAN LAKE	56	MCRTALITY
40	MICRO TECHNICA GYROCOMPASS	57	MORTALITY
121	MICROFILM PLOTS	62	MORTALITY
123	MICROFILM PLOTS	63	MORTALITY
89	MIE SCATTERING THEORY	64	MODIALITY
124	MILLED EUDDECT	24	HOTION FOUNTIONS OF
107	MILLER PORCESTON	24	MOTION EQUATIONS OF
103	MILLER PROJECTION	36	MUTION EQUATIONS OF
110	MILLER PROJECTION	36	MCTION EQUATIONS OF
115	MILLER PROJECTION	37	MOTION EQUATIONS OF
38	MINERALOGIC ANALYSIS	39	MOVE
15	MINIMA REJECTION	91	MCVEMENT OF SEA ICE
102	MININGHAM R	77	MPRINTO
107	MINUTE - DECREE CONVERCION	67	MTCOD
201	MICCION CCEMADIO	71	MUDBAN
20	MICCION DADILIC	110	MUDPAR
22	MISSIUM KADIUS	80	MUIRHEAD CHARLES R
150	MIXED LAYER	135	MULUA
12	MIXED LAYER DEPTH	67	MULTIPLE-REGRESSION ANALYSIS
88	MIXED LAYER DEPTH ANALYSIS	136	MULTIPLE DISCRIMINANT ANALYSIS
20	MK2CAL	82	MUNK SVERDRUP-MUNK WAVE
99	MK48 TORPEDO ACOUSTICS		FORECASTING SYSTEM
51	MOBLEY CURTIS	63	MURPHY CATCH FOHATION
93	MODE ENHANCEMENT	28	MYACHEM
92	MODE SHARES	90	MVEDS MADV E
24	MODEL RAV	25	MAET
20	MODEL CHECADEANE DAY	151	NAIL
20	MODEL COASTAL UDUELLIANS	151	NAMES
28	MODEL COASTAL OPWELLING		NANSEN BUITLES
24	MUDEL CUASILINE	39	NAVIGATION
51	MCDEL ECIOSYSTEM	40	NAVIGATION
24	MODEL ESTUARY	43	NAVIGATIGN
31	MODEL HELICAL WIRE	44	NAVIGATION
127	MODEL IDENTIFICATION	145	NAVIGATION
132	MODEL IDENTIFICATION	76	NAVIGATION FRROR FACTORS
29	MADEL NUMERICAL	108	MAVICATICN DLOT
28	MODELING AN OCEAN POND	109	NAVIGATION REAL TIME
126	MOHR C MICHAEL	100	MANICATION WITH OTHER DATA DUCT
134	MUNK C MICHAEL	120	NAVIGATION WITH OTHER DATA PLOT
			* =
115	MOLLWEIDE HCMOLOGRAPHIC PROJECTION	144	NDAYWK
86	MOMENT	52	NEILSEN
94	MGNOCHROMATIC SOURCE	111	NELSON MERLE L
56	MONTE CARLO SIMULATION	133	NELSON CHARLES R
72	MONTE CARLO SPILL TRACKER	53	NET SAMPLES
2	MENTGOMERY	26	NEUSE ESTUARY
150	MCNTH80	138	NEWFIT
20	MODERS CHRISTOPHER N K	93	NEWMAN
21	MCCERS CHRISTOPHER N K	_	
105		121	NGSDC FORMAT
TOS	MGORE MICHAEL	28	NINIGRET POND

	NISKIN CURRENT ARRAY NITRATE NITRATE NITRATE NITRATE NITRITE NITRITE NITRITE NIX D B NIX D B NIX D B NOCHROMATIC SOURCE NODC FORMAT NODCSQ NOISE NGISE GEGMAGNETIC BACKGRGUND NOISE WHITE NOIZT NCNADDITIVITY NORMAL MODES NORMOD3 NORMSEP NORTH AMERICAN DATUM NOS SCIENTIFIC SUBROUTINE SYSTEM NOW! IN		
74	NISKIN CURRENT ARRAY	30	ORTHOGONAL COLLOCATION
6	NITRATE	136	ORTHOGONAL POLYNOMIAL
7	NITRATE	121	OSBURN ROGER T
8	NITRATE	121	OVERLAY PLOTTING
28	NITRATE	23	OXIDATION POTENTIAL CALIBRATIONS
7	NITRITE	23	OXIDE
8	NITRITE	1	DXYGEN
28	NITRITE	4	OXYGEN
90	NIX D B	7	OXYGEN
14	NIX D B	8	OXYGEN
73	NOCHROMATIC SOURCE	11	OXYGEN
7	NODC FORMATI	2	OXYGEN ANOMALY
9.	NODC FORMAT	22	OXYGEN DISSOLVED
102	NODC FORMAT	26	OXYGEN DISSOLVED
146	NODC FORMAT	28	OXYGEN DISSCLVED -
148	NODC FORMAT	51	OXYGEN DIURNAL CURVE METHOD
151	NODC FORMAT	52	OXYGEN DIURNAL MEASURES
151	NODCSQ	11	OXYGEN PERCENT SATURATION
132	NOISE	22	OXYGEN PERCENT SATURATION
120	NGISE GEGMAGNETIC BACKGROUND	124	OXYGEN PHOSPHATE DENSITY PLOTS
129	NOISE WHITE	146	OXYGEN SATURATION
129	NOIZT	2	OXYGEN SATURATION
70	NCNADDITIVITY	6	OXYGEN SATURATION
93	NORMAL MODES	7	OXYGEN SATURATION PERCENT
93	NORMOD3	6	OXYGEN UTILIZATION APPARENT
136	NORMSEP	52	P/R
111	NOISE NOISE GECMAGNETIC BACKGROUND NOISE WHITE NOIZT NCNADDITIVITY NORMAL MODES NORMOD3 NORMSEP NORTH AMERICAN DATUM NOS SCIENTIFIC SUBROUTINE SYSTEM NOWLIN	138	P3TERM
113	NOS SCIENTIFIC SUBROUTINE SYSTEM	12	PACIFIC TROPICAL
7	NOWLIN	82	PACIFIC WIND WAVES/SWELLS
76	NSAR	84	PAGE EILEEN
39	NUMBER	74	PAIRWISE CORRELATION DRIFT BOTTLE
42	NUMBER		RECOVERY
149	NOWLIN NSAR NUMBER NUMBER NUMBERING OF DECK NUTRIENT NUTRIENT CHEMISTRY NWDAT NXTDY OBLIQUE MERCATOR PROJECTION	73	PALOS VERDES SHELF
3	NUTRIENT	26	PAMLICO SCUND
153	NUTRIENT CHEMISTRY	57	PANDALID SHRIMP
144	NWDAT	109	PARAMETRIC MAP
144	NXTDY	127	PARAMETER ESTIMATION
109	NXTDY OBLIQUE MERCATOR PROJECTION OBLIQUE MERCATOR PROJECTION C'BRIEN ROBERT A JR G'BRIEN ROBERT A JR O'BRIEN ROBERT A JR OBVFRQ GCCOMP OCCO1PO7 OCEAN	132	PARAMETER ESTIMATION
110	OBLIQUE MERCATOR PROJECTION	109	PARRINELILO J
107	C'BRIEN ROBERT A JR	111	PARRINELLO J
108	G'BRIEN ROBERT A JR	25	PARTICLE TRAJECTORIES
124	O'BRIEN ROBERT A JR	133	PARZEN E
8	OBVFRQ	132	PARZEN SPECTRAL WINDOW
9	GCCOMP	95	PATTERN FUNCTION
28	OCEO1P07	33	PATTON KIRK T
108	OCEAN	35	PATIUN KIRK T
	COEAL DATE		
13	GCEAN LIB	64	PAULIK G J
4	OCEANS V	30	PAYLOAD
50	OEP	118	PAYNE RICHARD E
99	GFFICER	119	PAYNE RICHARD E
74	GIL	3	PEAKS
72	OIL SPILLS	66	PEARSON PRODUCT-MOMENT
102	CLMSTED C	70	CORRELATION COEFFICIENT
109	OMEGA	72 4 5	PEDERSON L B
114	OMEGA CONVERSION	65	PELLA J
105	OMEGA CONVERSION	9	PEN DAVE
11 147	OPLOT ORSTOM FORMAT	19 138	PENDLETON DAVE PENDLETON DAVE
141	UNDICH FUNNA!	130	FENOLETUN DAVE

```
141 PENDLETON DAVE
                                                                                      42 PLOTZ
 35 PENETRATION OF CORER
                                                                                    20 PLSAD
                                                                                    8 PLTEDT
129 PLTFOR
129 PLTFRQ
129 PLTSPC
  88 PERDUE J N
78 PERFECT DANIEL FREQUENCY WINDOW 125 PERFECT DANIEL FREQUENCY WINDOW
 78 PERIODOGRAM
                                                                                 19 PODENS
110 POINT GENERATOR
94 POINT MONCCHROMATIC SOURCE
67 PCISSON DISTRIBUTION
106 POLAR COORDINATES
47 POLAR STERECGRAPHIC PROJECTION
110 PCLAR STEREOGRAPHIC PROJECTION
115 POLAR STEREGGRAPHIC PROJECTION
115 POLARIS AND SOUTH STAR METHOD
50 POLICY EGOSYSTEM MANAGEMENT
81 PCLLAK HENRY L
8 POLLONI CHRIS
105 POLLONI CHRIS
143 POLLONI CHRIS
143 POLLONI CHRIS
144 POLLUTANT DIFFUSION FIELDS
75 POLLUTION GIL
76 POLLUTION THERMAL
180 POLRT
125 PERIODOGRAM
                                                                                     19 PODENS
128 PERIODOGRAMS
129 PERIODOGRAMS
20 PERKINS HENRY T
21 PERKINS HENRY T
          PERMEABILITY
 49
122 PFLDST
 22
         PH
129 PHAPLT
134 PHASE
125 PHASE ANGLE VS FREQUENCY PLOTS
127
          PHASE ESTIMATES
         PHASE ESTIMATES
129
130 PHASE ESTIMATES
126 PHASE SPECTRA
  80 PHASES TIDAL CONSTITUENTS
  22 PHENOLPHTHALEIN ALKALINITY
                                                                                130 POLRT
109 PCLYCONIC PROJECTION
130 POLYDV
130 PCLYNOMIAL DIVISION
128 PCLYNOMIAL MULTIPLICATION
  54 PHEO-PIGMENTS
  44 PHCNEY
7 PHOSPHA
 7 PHOSPHATE
8 PHOSPHATE
28 PHOSPHATE
128 PCLYNOMIAL MULTIPLICATION
52 PHOTOSYNTHETIC QUOTIENT
53 PHYTGPLANKTON NUMBERS, VOLUMES,
SURFACE AREAS
55 PHYTOPLANKTON POPULATION DENSITY
64 PIECEWISE INTEGRATION
55 POPULATION
55 POPULATION DENSITY
57 POPULATION DENSITY PHYTOPLANKTON
58 POPULATION DENSITY PHYTOPLANKTON
59 POPULATION DISTRIBUTIONS
          PHOSPHATE
55 PIENAAR L V
136 PIENAAR L V
112 PIERCE C E
37 PIERCE R
24 PIETRAFESA L J
                                                                                                 RANDOM SAMPLE
                                                                                  FANDUM SAMPLE
57 POPULATION SIMULATOR
80 PORE N A
82 PORE N A
83 PORE N A
  26 PIETRAFESA L J
  54 PIGMENT RATIO
                                                                                 30 PORE WATER PRESSURE
147 POSEIDON
13 POSIT
22 POTASSIUM
 52 PIGMENTS
54 PIGMENTS
  86 PILE FORCE DISTRIBUTION ON
  56 PISCES
  34 PITCH
                                                                                     18 PCTDEN
                                                                                  10 PCTEMP
1 POTENTIAL DENSITY
18 POTENTIAL DENSITY
19 POTENTIAL DENSITY
2 PCTENTIAL ENERGY
  39 PLANE DIPPING LAYERS
  52 PLANKTON
53 PLANKTON
  56 PLANNING FISHERIES
                                                                             2 PCTENTIAL ENERGY
1 POTENTIAL ENERGY ANCMALY
6 POTENTIAL ENERGY ANOMALY
9 PCTENTIAL ENERGY ANCMALY
6 POTENTIAL SIGMA
7 POTENTIAL SIGMA
1 POTENTIAL TEMPERATURE
5 POTENTIAL TEMPERATURE
6 POTENTIAL TEMPERATURE
7 PGTENTIAL TEMPERATURE
  53 PLASMA VOLUME
  48 PLASTIC LIMIT
 15 PLESSEY CTB-STD 42 PLOT
124
          PLOT
 39 PLOTDFER
100 PLOTS 3-D ISOMETRIC AND CONTOUR
40 PLOTS GEOPHYSICAL
50 PLOTSPECG
```

Ų

```
8 POTENTIAL TEMPERATURE
10 POTENTIAL TEMPERATURE
110 POTENTIAL TEMPERATURE
110 POTENTIAL TEMPERATURE
110 POTENTIAL TEMPERATURE
1110 POTENTIAL TEMPERATURE
1111 POTENTIAL TEMPERATURE
111 POTENTIAL TEMPERATURE
111 POTENTIAL TEMPERATURE
112 POTENTIAL TEMPERATURE
113 POTENTIAL TEMPERATURE
114 POTENTIAL TEMPERATURE
115 POTENTIAL TEMPERATURE
116 POTENTIAL TEMPERATURE
117 POTENTIAL TEMPERATURE
118 POTENTIAL TEMPERATURE
119 POTENTIAL TEMPERATURE
110 POTENTIAL TEMPERATURE
111 POPERATOR SPECTRA
111 POPERATOR SPECTRA
112 POMBER SPECTRA
113 POMBER SPECTRA
113 POMBER SPECTRA
114 POWSER
115 POWSER SPECTRA
115 POWSER SPECTRA
116 POWSER SPECTRA
117 POWSER SPECTRA
118 POWSER
118 POWSER
118 POWSER
119 POMBER SPECTRA
119 POWSER SPECTRA
110 POWNTER A'B
110 POWNTER A'B
110 POWNTER A'B
111 POWNTER A'B
111 POWNTER A'B
111 POWNTER A'B
112 POWSER SPECTRA
113 PREDICTOR-CORRECTOR METHOD
11 PRESSURE
11 PRESSURE
12 PRESSURE
13 PREDICTOR-CORRECTOR METHOD
14 PRESSURE
15 PRESSURE
16 PRESSURE
17 PRESSURE
18 PRESSURE
19 PRESSURE
19 PRESSURE
10 PRESSURE
10 PRESSURE
10 PRESSURE
11 PRESSURE
12 PRESSURE
12 PRESSURE
13 PREDICTOR SPECTRA
14 PRESSURE
14 PRESSURE
15 PROBABILITY
16 PROBABILITY
17 PROBABILITY
18 PRINTER PLOTS
18 PRESSURE BARCWETRIC
19 PRESSURE
19 PRESSURE BARCWETRIC
19 PRESSURE
19 PRESSURE BARCWETRIC
19 PRESSURE BARCWET
              85 PROFILE 87 RAD

119 PROFILE 31 RADAC

122 PROFILE 133 RADER C M

121 PROFILE PLOT 80 RADIAL TIDAL FORCE

119 PROFILE PLOT 80 RADIATION

119 PROFILE VS TIME OR DISTANCE 90 RADIATION

108 PROFL 87 RADIATION SCLAR

116 PROFL 87 RADIOMETER

122 PROFL3 89 RADIOMETER

129 PROGRESSICN ARITHMETIC 88 RADIOSONDE
```

32	RADIUS OF MISSION RAMSC RAMSC RAMSC RANDM RANDOM NUMBERS RANDOM SAMPLE RANDOM SHCCK RANGE RANGE RAPLCT RAY DENSITIES RAY DIAGRAMS RAY EQUIVALENTS RAY SQRT RAY TRACING RAYDIST RAYLEIGH — MORSE RAYMOR RAYTRACE RCTFFT RDEDTP READ TAPE RECOVERY DRIFT BOTTLE RECRUITMENT RECRUITMENT RECRUITMENT RECRUITMENT RECRUITMENT RECTIFIEC SKEW ORTHOMORPHIC PROJECTION RECTIVITY INDEX REDFIELD	149	REPRODUCTION OF DECK
31	RAMSC	76	RESCUE
31	RAMSC	57	RESERVOIR
130	RANDM	45	RESIDUAL MAGNETIC ANOMALY
130	RANDOM NUMBERS	52	RESPIRATION
130	RANDOM SAMPLE	130	RESPON
132	RANDOM SHCCK	135	RESPONSE SURFACE
32	RANGE	153	RETBT
93	RANGE	151	RETRIEVAL
100	RAPLCT	151	RETRIEVAL
102	RAY DENSITIES	153	RETXBT
99	RAY DIAGRAMS	101	REVERBER ATTON
93	RAY EQUIVALENTS	90	REVERBERATION
101	RAY SORT	94	REVERBERATION INDEX
102	RAY TRACING	95	REVERBERATION INDEX
112	RAYDIST	130	REVERS
95	RAYLEIGH - MORSE	138	KEYTE E K
95	RAYMOR	106	PHINRI THE
102	RAYTRACE	100	DICHADOS
130	RCTEET	F 2	DICHADO
12	RNENTP	52	RICHED W E
146	READ TARE	20	DICKED M E
74	DECOVEDY PRIET ROTTLE	O4 E/	RICKED VIELD CONATION
67	DECDEATION	20	KICKEK TIELD EQUALION
5/	DECRITACIA	91	KIIE
57	DECOUTTMENT	60	RITTER O MALIER
50	DECOLITMENT	61	RITTER O WALTER
110	RECTIFIEC SKEW ORTHOMORPHIC PROJECTION RECTIVITY INDEX REDFIELD REDOX REACTION REDUCTION	68	RITTER O WALTER
110	RECTIFIED SNEW DRINGWORPHIC	69	KILLER U WALLER
	PROJECTION	70	RILLER U WALTER
:2	RECTIVITY INDEX	71	RITIER U WALTER
2 23	REDFIELD	24	RIVERS FLUWING INTO ESTUARY
	REDUX REACTION	39	RUEB JAMES M
6	REDUCTION REDUCTION AND DISPLAY OF DATA ACQUIRED AT SEA	133	ROBINSON ENDERS A
145	ACCURDED AT SEA	62	RUBSUN U S
1.00	ACQUIRED AT SEA	120	ROCK R G
138	RECUCTION TECHNIQUE CURVE COEFFICIENTS REED R K REEVES J C REFL1 REFLECTION COEFFICIENTS REFLECTION WIDE—ANGLE REFRACTION REFRACTION	103	RCEDDER SPENCER
07	COEFFICIENTS	66	RCHLF F JAMES
87	REED K K	67	ROHLF F JAMES
95	KEEVES J C	68	RCHLF F JAMES
85	KETLI Dest corten correttorente	69	RCHLE F JAMES
94	KEPLECTION CUEPPICIENTS	70	ROHLF F JAMES
39	REFLECTION WIDE-ANGLE	52	KCNA M R
89	REFRACTION	130	RCCTS OF A PCLYNOMIAL
94	REFRACTION	102	ROSENBAUM S
83	REPRACTION COEFFICIENTS WAVE	118	RUSS C K
112	KEFKACIILN MUDELS	112	₹622 E B
39	REFRACTION SEISMIC	137	RCSS E B
45	REGIONAL FIELD	106	RGTATION ABOUT A POLE
51	REGRESSICN ANALYSIS	106	ROTATION FOR CLOSEST APPROACH
134	REGRESSION ANALYSIS	106	RCTATION ON A SPHERE
65	REGRESSION LINEAR	105	RCTGUT
82	REGRESSION STATISTICAL SCREENING	110	RCWEN LOUIS
126	REGRESSIVE - MOVING AVERAGE	130	RPLACE
121	REGRIDIT	20	RSMAS
51	REGREUP	33	RUNGE-KUTTA ALGORITHM
3	REINIGER R	34	RUNGE-KUTTA ALGORITHM
118	REINIGER R F	35	RUNGE-KUTTA ALGORITHM
141	REINSCH'S TECHNIQUE	36	RUNGE-KUTTA ALGORITHM
57	REPRODUCTIVE SUCCESS	37	RUNGE-KUTTA ALGORITHM

```
14 SCRIPPS ILLUMINAMETER
148 SCRUB
122 SCTGM 4
122 SCTGM 5
151 SD2GAS
      37 RUPINSKI S
14 RUSSELL JCHN J
15 RUSSELL JCHN J
54 RYLD
        99 S0434B
                                                                                                                                                                                                                    151 SD2GAS
152 SD2MSTCT
152 SD2SAMP
151 SD2TOSD 1
104 SDANO
151 SDCHAR
152 SDGEDIV
152 SDPASS
152 SDPRT2
152 SDSELECT
34 SEA STATE SHIP RESPONSE TO
83 SEA STATE
46 SEAMOUNT MAGNETIZATION
76 SEARCH AND RESCUE PLANNING
        95 $1587
  95 S1797
16 S2049
123 SABOL PAUL
144 SABCL PAUL
   106 SAILB
  106 SAILG
106 SAILM
18 SALINE
1 SALINITY
             2 SALINITY
             3 SALINITY
                                                                                                                                                                                                                             76 SEARCH AND RESCUE PLANNING
52 SEASON
14 SECOHI DISK
113 SECOND - DEGREE CONVERSION
8 SECOPG
             4 SALINITY
           6 SALINITY
7 SALINITY
            8 SALINITY
                                                                                                                                                                                     8 SECOND — DEGREE CONTERSION
8 SECOND
6 SEDHYP
48 SEDIMENT
35 SEDIMENT FRICTIONAL FORCES DUE TO
25 SEDIMENT LOAD
97 SEDIMENT SOUND VEL ADJUSTMENT
98 SEDIMENT SOUND VELOCITY
38 SEDIMENTS
7 SEDSTD
39 SEISMIC DATA
50 SELECT
151 SELECTION
151 SELECTION
90 SENSIBLE HEAT EXCHANGE
120 SEQUENTIAL PLOTTING
130 SERGEN
149 SERIALIZATION OF DECK
100 SERPENT
49 SETTLEMENT
82 SVERDRUP-MUNK WAVE FORECASTING
SYSTEM
     11 SALINITY
14 SALINITY
19 SALINITY
22 SALINITY
22 SALINITY
   146 SALINITY
     146 SALINITY
2 SALINITY ANOMALY
6 SALINITY FLUX
24 SALINITY IN ESTUARY
25 SALINITY IN ESTUARY
25 SALINITY IN ESTUARY
25 SALINITY INTRUSION
91 SALPR
28 SALT ADVECTION
25 SALT CONSERVATION OF
28 SALT CONTINUITY
12 SALT TRANSPORT
11 SALTY
       11 SALTY
  48 SAND
130 SARIT
130 SARIT
142 SAS
105 SATELLITE
103 SATELLITE STATEM
105 SATELLITE NAVIGATION
106 SATELLITE RISE & SET
107 SHANNON-WEAVER
128 SATELLITE VHRR DISPLAY
129 SATELLITE VHRR DISPLAY
130 SHAPE
130 SCALAR TIME SERIES
131 SCALAR TIME SERIES
132 SCALAR TIME SERIES
133 SCATTERING OF SOUND BY ORGANISMS
134 SHEPPARD'S CORRECTION
125 SCALAR OMISSION
136 SCENARIO MISSION
137 SHAPE
138 SCHAEFER M B
139 SCHAEFER M B
130 SCHAEFER R W
131 SCHAEFER R W
132 SCALAR TIME SERIES
133 SCHAEFER R W
134 SHIP RESPONSE
135 SCHOOLE STATION TIME
147 SHOW FORMAT
148 SCHUE
159 SCHULKIN
159 SCHULKIN
150 SCMULTI
151 SCMULTI
152 SCMULTI
153 SCMULTI
154 SCMULTI
155 SCMULTI
155 SCMULTI
157 SCMULTI
158 SCMULTI
159 SCMULTI
150 SCMULTI
157 SER RATIO
158 SCMULTI
158 SCMULTI
159 SCMULTI
150 SCMULTI
150 SCMULTI
150 SCMULTI
151 SUBMA-O
152 SCMULTI
153 SCMULTI
154 SUBMA-O
155 SCMULTI
155 SCMULTI
157 SER RATIO
130 SHAPE
130 SHAPE
130 SHAPE
131 STGMA-O
130 STGMA-O
130 STGMA-O
130 STGMA-O
130 SCMULTI
130 STGMA-O
150 SCMULTI
150 SCMULTI
151 SUBMA-O
151 STGMA-O
151 STGMA-O
152 SCMULTI
153 SCMULTI
```

```
6 SIGMA-STP
                                                                                                                                            112 SCDANO INVERSE
110 SCDANO INVERSE METHOD
        1 SIGMA-T
        2 SIGMA-T
4 SIGMA-T
                                                                                                                                             114 SCDANO METHOD
                                                                                                                                             114 SCDIN
114 SCDPN
30 SCIL TEST
        5 SIGMA-T
              SIGMA-T
        7 SIGMA-T
                                                                                                                                               66 SCKAL ROBERT R
     8 SIGMA-T
10 SIGMA-T
12 SIGMA-T
                                                                                                                                                67 SCKAL ROBERT R
                                                                                                                                               68 SCKAL ROBERT R
                                                                                                                                              69 SOKAL ROBERT R
70 SCKAL ROBERT R
12 SCLENOIDAL VALUES
     13 SIGMA-T
     15 SIGMA-T INVERSION REMOVAL
10 SIGMAT
13 SIGMAT
                                                                                                                                            98 SGLID SAMPLE SOUND VELOCITY
                                                                                                                                                4 SOMERS H
                                                                                                                                           95 SGNAR
101 SGNAR
14 SCNIC
     18 SIGMAT
                                                                                                                                                              SCNAR IN REFRACTIVE WATER SCNIC LAYER DEPTH
       7 SILICATE
8 SILICATE
8 SILICATE
13 SGUND
23 SILICATE
94 SCUND REFRACTION
28 SILICATE
95 SCUND SCATTERING
22 SILLEN
1 SCUND VELOCITY
48 SILT
14 SGUND VELOCITY
136 SIMILARITY MATRIX
6 SCUND VELOCITY
73 SIMPSON
7 SCUND VELOCITY
69 SIMULTANEIOUS TEST PROCEDURE
97 SCUND VELOCITY
71 SIMULTANEOUS TEST PROCEDURE
97 SCUND VELOCITY
135 SINE FOURIER TRANSFORM
97 SCUND VELOCITY
136 SINTR
98 SGUND VELOCITY
137 SINUSOIDAL EQUAL AREA PROJECTION
138 SINUSOIDAL EQUAL AREA PROJECTION
14 SIZE
153 SPAR-ARRAY CYNAMICS
153 SPAR-BUOY CYNAMICS
153 SPARKS CHARLOTTE
                                                                                                                                              97 SCNVEL
       8 SILICATE
 93 SKAT
38 SKEWNESS
32 SKOP'S METHOD
26 SLOTTA L S
106 SMALL CIRCLE FIT
                                                                                                                                 153 SPARKS CHARLOTTE
                                                                                                                                      58 SPAWNER-RECRUIT CURVE
58 SPAWNING STOCK
130 SPEC
50 SPECIES
    83 SMITH BSL
                                                                                                                                             51 SPECIES
126 SMITH S D
130 SMC
131 SMOOTH STD CATA
131 SMOOTH STD CATA
132 SMOOTH
133 SMOOTH
134 SMOOTH
135 SMOOTH
135 SMOOTHED DENSITY PROFILE
136 SMOOTHED SERIES
137 SPECIES DIRECTORY
128 SMOOTHED SERIES
139 SMOOTHED SERIES
130 SMOOTHED SERIES
131 SMOOTHING BINCMIAL
131 SMOOTHING CUBIC SPLINE
132 SMOOTHING CUBIC SPLINE
133 SMOOTHING SPECTRAL ESTIMATES
134 SMOOTHING SPECTRAL ESTIMATES
135 SMOOTHERS L A
136 SMOOTHERS L A
137 SMOOTHERS L A
138 SMOOTHERS L A
149 SPECIFIC VOLUME ANOMALY
121 SMOTHERS L A
150 SPECIFIC VOLUME ANOMALY
122 SMOOTHERS L A
150 SPECIFIC VOLUME ANOMALY
151 SMOOTHERS L A
150 SPECIFIC VOLUME ANOMALY
152 SMOOTHERS L A
150 SPECIFIC VOLUME ANOMALY
153 SNAPLOACS
150 SPECIFIC VOLUME ANOMALY
151 SNAPLOACS
150 SPECIFIC VOLUME ANOMALY
152 SMOOTHING SPECTRAL STIMATES
150 SPECIFIC VOLUME ANOMALY
151 SMOOTHERS L A
150 SPECIFIC VOLUME ANOMALY
151 SNAPLOACS
150 SPECIFIC VOLUME ANOMALY
151 SNAPLOACS
150 SPECIFIC VOLUME ANOMALY
151 SNAPLOACS
151 SPECIFIC VOLUME ANOMALY
152 SPECIFIC VOLUME ANOMALY
153 SNAPLOACS
150 SPECIFIC VOLUME ANOMALY
151 SNAPLOACS
151 SPECIFIC VOLUME ANOMALY
152 SPECIFIC VOLUME ANOMALY
153 SNOOP
150 SPECIFIC VOLUME ANOMALY
150 SPECIFIC VOLUME ANOMALY
151 SNOOP
 126 SMITH S D
130 SMC
13 SMOOTH STD CATA
138 SMOOTH
                                                                                                                                             52 SPECIES
    43 SNOOP
                                                                                                                                        130 SPECT 1
  91 SNOW
104 SCDANO ES
                                                                                                                                          130 SPECT 2
34 SPECTRA
```

```
SPECTRA

SPECTRA

SPECTRA

SPECTRA TIME VARYING

SPECTRAL ANALYSIS

SPECTRAL DENSITY

SPECTRAL DENSITY

SPECTRAL DENSITY

SPECTRAL DENSITY

SPECTRAL DENSITY

SPECTRAL DENSITY

SPECTRAL ESTIMATES

SPECTRAL ESTIMATES

SPECTRAL MINDON

STEDAD

STATE STATE CONFIGURATION

STEADY STATE CONFIGURATION

STEADY STATE CON
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PLESSEY BISSET-BERMAN GUILDLINE
                                                                  7 STANISLAS
147 STANISLAS
121 STARR K K
50 STATAB
112 STATE PLANE COORDINATE TRAVERSE
1 STATION :DATA
2 STATION DATA
4 STATION DATA
5 STATION DATA
5 STATION DATA
5 STATION DATA
6 SUBMARINE GRAVIMETER
5 STATION DATA
7 STATION DATA
7 STATION DATA
8 STATION DATA
9 SUBSTANCE ADVECTION/DIFFUSION
35 SUBSURFACE BUCY
54 SUCCESSION
                                                                                                                                                                                                                                                                                                                                                                                                                                                            54 SUCCESSION
78 SUFCUR
80 SCLAR TIDAL FORCE
23 SULFIDE
                                                                            15 STATION DATA
151 STATION DATA
3 STATION POSITIONS
```

```
17 SULLIVAN
                                               63 TCPF3
138 SULLIVAN JERRY
                                               65 TCPF7
 69
15
     SUM OF SQUARE STP
                                              65 TCPF8
     SUMMARY
                                              143 TCPLO
 91
     SUPER A D COR
                                              131 TCREPLT
65 TCSA1
152 SUPERSEL
     SURF PREDICTION
                                               66 TCSA2
 78
                                               66 TCSA3
     SURFACE CURRENT
 91
     SURFACE CURRENT
                                               66 TCSB1
     SURFACE ELEVATION
 25
                                              67 TCSB2
 31
     SURFACE EXCITATION
                                              67 TCSC1
67 TCSC2
     SURFACE TEMPERATURE MODEL
 17
                                              69 TCSD4
     SURFACE WAVE PAYS
 84
 34
     SURGE
                                              69 TCSEI
 62
     SURVIVAL
                                               69 TCSE2
                                              70 TCSE3
70 TCSE4
70 TCSE5
71 TCSE6
 28
     SUSQUEHANNA RIVER
 9
     SVANOM
 97 SVELFS
123
     SVHRR4KM
 79
     SWEERS H E
                                               68 TCSP1
 82
     SWELL
                                               68 TCSP2
                                               69 TCSP3
56 TEACHING GAME
134
     SWITZER PAUL
89 SWOP II
                                               85 TEACHING AIDS WATER WAVE
146
     SXNOP
 39
     SYMBOL
                                               3 TECHAL DIGITIZER
 42
     SYMBOL
                                               3 TECHNICON AUTGANALYZER
138
                                               20 TEMPDIFF
1 TEMPERATURE
2 TEMPERATURE
     SYMMET
 87
     SYNOP
 9 TABATA
                                                4 TEMPERATURE
 10 TABATA
 11 TABATA
                                                7 TEMPERATURE
 61
     TAG DATA
                                               8 TEMPERATURE
 38 TALWANI MANIK
                                              12 TEMPERATURE
14 TEMPERATURE
22 TEMPERATURE
 40 TALWANI
145 TALWANI
131 TAUTCPLT
                                              87 TEMPERATURE AIR
 31
     TAWAC
                                              90 TEMPERATURE CHANGE VERTICAL
                                             146 TEMPERATURE CORRECTION
20 TEMPERATURE DIFFERENCE
134 TEMPERATURE FLUCTUATIONS
 53
     TAXONOMIC DIRECTION
138 TCF
146 TCHK1
146 TCHK2
                                                    AIR-SEA INTERFACE
146 TCHK3
                                                6 TEMPERATURE FLUX
131
     TCOHPLT
                                              138 TEMPERATURE-SALINITY CORRECTIONS
 58
                                             17 TEMPERATURE SURFACE
125 TEMPLT7
30 TENSION
     TCPA1
 58 TCPA2
 58 TCPA3
 59 TCPB1
                                               33 TENSION
 59
     TCPB2
                                               35 TENSION
 59 TCPB3
                                              36 TENSION
 60 TCPC1
                                             153 TENSQ
35 TERMINAL VELCCITY
134 TERRAIN GCEAN ANALYSIS
 60 TCPC2
 60 TCPC3
 64
     TCPC4
                                              131 TFGRM1
 64
     TCPC5
                                              131 TFORM2
     TCP01
                                              25 THATCHER M LLEWELLYN
10 THERMAL EXPANSION
72 THERMAL POLLUTION
 61
     TCPE1
 62
 63 TCPE2
                                              90 THERMAL STRUCTURE VERTICAL
 63 TCPF1
 63 TCPF2
                                               17 THERMAL TRANSIENTS
```

```
TRAPEZOIDAL ARRAY

TRAPEZOIDAL ARRAY

TRAVERSE

TRAVERSE

TRAVERSE

TRAYERS COLCNEL JAMES L

TRAYERS COLCNEL JAMES L

TRAYERS COLCNEL JAMES L

TRAYERS COLCNEL JAMES L

TREND REMCVAL

TREND REMCVAL

TRIANGULATION STATIONS

TRIAX

TRIAX

TRIAX

TRIAX

TRIAX

TRIAXIAL SOIL TEST

TRIAXIAL COMPRESSION

TRIAXIAL COMPRESSION

TRIGONOMETRIC SERIES

TRIGONOMETRY

TRIPE R L K

       36 TRAPEZOIDAL ARRAY
37 TRAPEZOIDAL ARRAY
112 TRAVERSE
114 TRAVERSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       97 VAN WIE ROBERT
141 VAN WIE ROBERT
151 VAN WIE ROBERT
153 VAN WIE ROBERT
         131 TRISMO
89 TRUWIND
                      2 TS PLOT
         118 TS PLOT
      125 TSAP
132 TSGEN
132 TSPECT 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        48 VANE SHEAR STRENGTHS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  15 VARIANCE
134 VARIANCE
136 VARIANCE
60 VARIANCE—COVARIANCE
         132 TSPECT 2
13 TSVOL
11 TSVOL
12 TTYCON
12 TTYCON
13 TTYNUM
20 TUKEY
13 TUKEY
14 VECTOR AVERAGES VELGCITY
15 TUKEY
16 TUKEY
17 VECTOR AVERAGES VELGCITY
18 VECTOR DATE
18 VECTOR PROGRESSIVE
19 VECTORS PROGRESSIVE
19 VECTORS PROGRESSIVE
10 VEGA GREGCRY
11 VEGA GREGCRY
12 TUKEY WINDOW
10 VEL
11 VEGA GREGCRY
12 TUKEY WINDOW
11 VELOCIMETER VALUE ADJUSTMENT FOR
12 TUNA
13 TURN FORCES DUE TO SHIP ON A TURN
13 TURN FORCES DUE TO SHIP ON A TURN
14 TURN FORCES DUE TO SHIP ON A TURN
15 TURN FORCES DUE TO SHIP ON A TURN
16 TURN FORCES DUE TO SHIP ON A TURN
17 TURRETT EARRY
18 TURN FORCES DUE TO SHIP ON A TURN
19 VELOCITY VEGTOR AVERAGES
11 VENING MEINESZ
11 VENING MEINESZ
11 VENING MEINESZ
12 VERTICAL ARRAY SUMMARY
14 TWO FIVE
15 VERTICAL SECTION
16 VERTICAL SECTION
17 VERTICAL SECTION
18 TYLER MAUREEN
19 VERTICAL SECTION PLOTS
19 VERTICAL SECTION PLOTS
19 VERTICAL SECTION PLOTS
10 VEC
20 VESSEL FISHING POWER
21 VERTICAL TEMPERATURE GRADIENT
22 VERS
23 UMAX1
24 VERTICAL TEMPERATURE GRADIENT
25 VERSEL FISHING POWER
26 VESSEL FISHING POWER
27 VENSON PHILIP
28 VECTOR
29 VECTOR AVERAGES VELGCITY
29 VECTOR AVERAGES VELGCITY
20 VEGA GREGCRY
20 VEGA GROGCITY
20 VEGA GREGCRY
20 VELOCITY VEGA GREGCR
20 VEGA GROGCITY
20 VEGA GREGCRY
20 VE
               11 TSVOL
      44 UNIFGO
14 VINSON PHILIP
114 UNIVERSAL TRANVERSE MERCATOR GRID
15 UNLEAV
16 VINSON PHILIP
17 VINSON PHILIP
18 VISCOUS FUID
19 UNTER STEINER N
19 USCOUS FORCES
19 UPWELLING
20 UPWELLING
21 UPWELLING
22 UPWELLING
23 UREA
24 VOLTRN
25 UREA
26 UPWELLING
27 VOLTRN
28 UREA
29 VOLTRN
29 VOLUME
```

the state of the s

```
73 WEINSTEIN BRUCE
25 WEISE H G
85 WCFT1
133 WELCH P D
103 WENG S K
134 WENNINGER
146 WENG S K
156 WEST MARY
1 WCNG S K
177 WET BULB
177 WETBLB
174 WHALE SPECTRAL ANALYSIS OF CALL
22 WHITE LOIS
38 WCRZEL LAMAR
143 WHITE LOIS
38 WCRZEL LAMAR
144 WHITE LOIS
38 WCRZEL LAMAR
                                                                           85 WTMAX1
85 WTOFT1
         143 WHITE LOIS
         129 WHITE NOISE
```

- 38 X-RAY DIFFRACTION ANALYSIS
- 152 **XBCCNV**
- 152 **XBEVALU**
- 152 XBFNWC
- 153 XBFNWSUM
- 153 **XBGEOSUM**
- 153 XBMSINV
- 153 XBSELECT
- 151 XBT DATA
- XBTCONV 153
- 152 XBTCGUNT
- 152 XBTOKOUT
- 152 XORDER
- 12 77 XPORT
- XTAL
- 91 YARIT
- 150 YAVNER JUDY
- 153 YAVNER JUDY
- 54 YIELD
- 57 YIELD
- 64 YIELD
- 56 YIELD PER RECRUIT
- 63 YIELD PER RECRUIT
- 136 YONG MARIAN Y Y
- 144 YSTDY
- Z TRANSFORM 127
- 42 Z LIST
- ZEDIT
- 93 ZERO CROSSINGS
- 93 ZERO PRESSURE
- 17 ZMODE
- 53 ZGOPLANKTON DEEP OCEAN
- 91 ZUBOV
- 30 ZWIBEL H S

LANGUAGE INDEX

ALGCL 2 ALGOL B .6700 STATION DATA RETRIEVAL HYDROSEARCH B 6700 INTERACTIVE CALCULATIONS DSDP/CALC 142 ALGOL 98 ALGOL B 6700 SOUND VELOCITY THRU SOLID SAMPLES DSDP/SON B 6700 MAILING LABELS 148 ALGOL 48 ALGOL B 6700 SAND SILT AND CLAY FRACTIONS DSDP/GRAIN 134 ALGOL B 6700 SPECTRAL ANALYSIS OF TIME SERIES 12 ALGOL B 6700 CONSTANTS FOR HARMONIC SYNTHESIS MEAN SEA TEMP **ASSEMBLER** 152 ASSEMBLER IBM 360/65 XORDER 152 ASSEMBLER IBM 360/65 **XBTCCUNT** 153 ASSEMBLER IBM 360/65 RETXBT 153 ASSEMBLER IBM 360/65 **XBTCONV** 153 ASSEMBLER IBM 360/65 RETBT 153 ASSEMBLER IBM 360/65 BTLISTC 18 ASSEMBLER IBM 360/65 POTENTIAL TEMP AND/OR DENSITY POTDEN 20 ASSEMBLER IBM 360/65 TEMPERATURE DIFFERENCE CALCULATIONS IBM 360/65 SURFACE CURRENT SUMMARY SUFCUR 78 ASSEMBLER IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASTHERM 150 ASSEMBLER FILE INDEPENDENT GEN APP SYS GAS INDATA FILE INDEPENDENT GEN APP SYS GAS CREATE 150 ASSEMBLER IBM 360/65 150 ASSEMBLER IBM 360/65 IBM 360/65 FILE INCEPENDENT GEN APP SYS GAS MONTH80 150 ASSEMBLER IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS CHEM80 150 ASSEMBLER 150 ASSEMBLER IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS DEPTH8C FILE INDEPENDENT GEN APP SYS GAS LATLON80 150 ASSEMBLER IBM 360/65 IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASCRDER 150 ASSEMBLER IBM 360/65 151 ASSEMBLER SDRETV 151 ASSEMBLER IBM 360/65 SD2TOSD1 152 ASSEMBLER IBM 360/65 SDPRT2 IBM 360/65 152 ASSEMBLER SDSELECT 152 ASSEMBLER IBM 360/65 SD2MSTCT 152 ASSEMBLER IBM 360/65 SD2SAMP 152 ASSEMBLER IBM 360/65 MAKE120 152 ASSEMBLER IBM 360/65 DEPTH 152 ASSEMBLER IBM 360/65 CRUCON 152 ASSEMBLER IBM 360/65 CODCCONV IBM 360/65 152 ASSEMBLER SUPERSEL 152 ASSEMBLER IBM 360/65 SDPASS PLOTTER COMMANDS PLOT DVRIO 124 ASSEMBLY HP 2100S BASIC 31 BASIC HP 9830A UNMANNED FREE-SWIMMING SUBMERSIBLE PLOT HP 9830A UNMANNED FREE-SWIMMING SUBMERSIBLE HOTEL LOAD 32 BASIC HP 9830A UNMANNED FREE-SWIMMING SUBMERSIBLE 32 BASIC 13 BASIC IBM 360 ENVIRONMENTAL DYNAMICS SUBROUTINES OCEANLIB 13 BASIC IBM 360 GEOSTROPHIC CURRENT COBOL CONSISTENCY OF PHYSICAL AND CHEMICAL DATA 4 COBOL IBM 360/50 DATA MGT SYS FOR PHYS CHEM DATA OCEANSV 4 COBOL IBM 360/85 4 CCBCL CALCULATION OF THERMOMETRIC VALUES 4 COBOL STATION DATA SYSTEM FINAL VALUES

```
CDC 3300/OS3 TIME SERIES ARAND ARMAP
CDC 3300/OS3 TIME SERIES ARAND AUTO
   126 FORTRAN
   126 FORTRAN
   126 FORTRAN
                                                                     CDC 3300/083 TIME SERIES ARAND AUTOPLT
                                                                      CDC 3300/GS3 TIME SERIES ARAND AXISL
CDC 3300/GS3 TIME SERIES ARAND CCFFT
   126 FORTRAN
   126 FORTRAN
   127 FORTRAN
                                                                                  CDC 3300/OS3 TIME SERIES ARAND CCORR
   127 FORTRAN
                                                                                CDC 3300/GS3 TIME SERIES ARAND CONPLT
                                                                  CDC 3300/053 TIME SERIES ARAND COMPLOT CDC 3300/053 TIME SERIES ARAND COMPLOT CDC 3300/053 TIME SERIES ARAND CONFID
   127 FORTRAN
                                                                                 CDC 3300/OS3 TIME SERIES ARAND CONFID CDC 3300/OS3 TIME SERIES ARAND CONFID 1 CDC 3300/OS3 TIME SERIES ARAND CONMODE
   127 FORTRAN
                                                                 CDC 3300/OS3 TIME SERIES ARAND CONFID CDC 3300/OS3 TIME SERIES ARAND COMMODE CDC 3300/OS3 TIME SERIES ARAND COPH CDC 3300/OS3 TIME SERIES ARAND CCSTR CDC 3300/OS3 TIME SERIES ARAND CPES CDC 3300/OS3 TIME SERIES ARAND CPLT1 CDC 3300/OS3 TIME SERIES ARAND CPLT2 CDC 3300/OS3 TIME SERIES ARAND CROPLT CDC 3300/OS3 TIME SERIES ARAND CROSS CDC 3300/OS3 TIME SERIES ARAND CUSID CDC 3300/OS3 TIME SERIES ARAND CUSFO CDC 3300/OS3 TIME SERIES ARAND CZT CDC 3300/OS3 TIME SERIES ARAND DATPLT CDC 3300/OS3 TIME SERIES ARAND DEMODI
   127 FORTRAN
   127 FORTRAN
   127 FORTRAN
   127 FORTRAN
   127 FORTRAN
  127 FORTRAN
127 FORTRAN
   127 FORTRAN
   127 FORTRAN
   127 FORTRAN
   127 FORTRAN
   128 FORTRAN
   128 FORTRAN
 128 FORTRAN
CDC 3300/053 TIME SERIES ARAND DEMOD1
128 FORTRAN
CDC 3300/053 TIME SERIES ARAND DEMOD2
128 FORTRAN
CDC 3300/053 TIME SERIES ARAND DEMOD3
128 FORTRAN
CDC 3300/053 TIME SERIES ARAND DETRND
128 FORTRAN
CDC 3300/053 TIME SERIES ARAND DETRND
128 FORTRAN
CDC 3300/053 TIME SERIES ARAND DIFF12
128 FCRTRAN
CDC 3300/053 TIME SERIES ARAND EVERA
CDC 3300/053 TIME SERIES ARAND EUREKA

128 FORTRAN

CDC 3300/053 TIME SERIES ARAND EUREKA

129 FORTRAN

CDC 3300/053 TIME SERIES ARAND EXSMO

129 FORTRAN

CDC 3300/053 TIME SERIES ARAND FFIN

128 FORTRAN

CDC 3300/053 TIME SERIES ARAND FFINI

128 FORTRAN

CDC 3300/053 TIME SERIES ARAND FFINI

128 FORTRAN

CDC 3300/053 TIME SERIES ARAND FFTSN

128 FORTRAN

CDC 3300/053 TIME SERIES ARAND FILTER1

129 FORTRAN

CDC 3300/053 TIME SERIES ARAND FOUNTR

CDC 3300/053 TIME SERIES ARAND GENER1

129 FORTRAN

CDC 3300/053 TIME SERIES ARAND GENER1

129 FORTRAN

CDC 3300/053 TIME SERIES ARAND GENER1

129 FORTRAN

CDC 3300/053 TIME SERIES ARAND GENER3

129 FORTRAN

CDC 3300/053 TIME SERIES ARAND GENER3

129 FORTRAN

CDC 3300/053 TIME SERIES ARAND DHAPLT

CDC 3300/053 TIME SERIES ARAND DHAPLT

CDC 3300/053 TIME SERIES ARAND DHAPLT
129 FORTRAN CDC 3300/0S3 TIME SERIES ARAND NO12T 129 FORTRAN CDC 3300/0S3 TIME SERIES ARAND PHAPLT 129 FORTRAN CDC 3300/0S3 TIME SERIES ARAND PLTFOR 129 FORTRAN CDC 3300/0S3 TIME SERIES ARAND PLTFOR 129 FORTRAN CDC 3300/0S3 TIME SERIES ARAND PLTSPC 130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND POLRT 130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND POLYDV 130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND PROPLT 130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND PROPLT 130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND RANDM 130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND ROTFFT 130 FORTRAN CDC 3300/0S3 TIME SERIES ARAND ROTFFT CDC 3300/0S3 TIME SERIES ARAND RESPON
```

```
CDC 3300/0S3 TIME SERIES ARAND REVERS CDC 3300/0S3 TIME SERIES ARAND RPLACE
   130 FORTRAN
   130 FCRTRAN
   130 FORTRAN
                     CDC 3300/OS3 TIME SERIES ARAND RRVERS
                 CDC 3300/OS3 TIME SERIES ARAND SARIT
   130 FORTRAN
                     CDC 3300/OS3 TIME SERIES ARAND SERGEN
CDC 3300/OS3 TIME SERIES ARAND SHAPE
CDC 3300/OS3 TIME SERIES ARAND SINTR
   130 FORTRAN
   130 FORTRAN
   130 FORTRAN
   130 FORTRAN
                     CDC 3300/OS3 TIME SERIES ARAND SMO
   130 FORTRAN
                     CDC 3300/DS3 TIME SERIES ARAND SPEC
   130 FORTRAN
                     CDC 3300/GS3 TIME SERIES ARAND SPECT1
                     CDC 3300/0S3 TIME SERIES ARAND SPECT2
CDC 3300/0S3 TIME SERIES ARAND TAUTOPLT
CDC 3300/0S3 TIME SERIES ARAND TCOHPLT
   130 FORTRAN
   131 FORTRAN
   131 FORTRAN
CDC 3300/OS3 TIME SERIES ARAND TCROPLT
   131 FORTRAN
   131 FORTRAN
                   CDC 3300/OS3 TIME SERIES ARAND TFORM1
```

```
55 FORTRAN
                  IBM 370
                                PHYTOPLANKTON POPULATION DENSITY
                  IBM 370
 55 FORTRAIN
                                SPECIES DIVERSITY
 20 FORTRAN
                 PDP-11
                                GENERAL PURPOSE EDITOR DMSEC
                 PDP-11
                                TIME SERIES INTO PROFILES DMSCHP
 20 FORTRAN
 20 FORTRAN
                 POP-11
                                AANDERAA CURRENT METER DATA AACAL
 20 FORTRAN
                 PDP-11
                                CURRENT PROFILER DATA MK2CAL
 20 FORTRAN
                 PDP-11
                                APPENDS NEW DATA TO FILE DERIVE
                 UNIVAC 1106 APPENDS NEW DATA TO FILE DERIVE
UNIVAC 1106 CONCATENATES SCRTS SEGMENTS DUTPUTS EMSORT
 20 FORTRAN
 20 FORTRAN
                  UNIVAC 1106 INTERPOLATES TO UNIFORM GRID MATRIX 01
 20 FORTRAN
 20 FORTRAN
                  UNIVAC 1106 TIME SERIES STC OR PCM PROFILES PLSAD
                 UNIVAC 1106 INTERNAL WAVES IWEG
UNIVAC 1106 DYNAMICAL FIELDS INTERNAL WAVE RAYS CHRSEC
UNIVAC 1106 AUTO AND CRESS SPECTRA TUKEY METHOD
UNIVAC 1106 AUTO AND CRESS SPECTRA POLARIZED FORM CHXSPC
 20 FORTRAN
 20 FORTRAN
 20 FORTRAN
20 FORTRAN
 20 FORTRAN
                  UNIVAC 1106 AMPLITUDES PHASES LEAST SQUARES TIDES4
 20 FORTRAN
                  UNIVAC 1106 METECROLOGICAL FLUXES METFLX
                  UNIVAC 1106 CRESS CEVARIANCE MATRIX EMPEIGI
IBM 370/155 MODELING AN CCEAN POND
 20 FORTRAN
 28 FORTRAN
143 FORTRAN
                 HP 2100
                                THERMOMETER CORRECTION DEPTH COMP HYD1
                 IBM 370
 50 FORTRAN
                                CPTIMAL ECCSYSTEM POLICIES CEP
 72 FORTRAN
                 CDC 3100
                                DANISH ADVECTION PROGRAM
 83 FORTRAN
                  CDC 3100
                                SINGULAR WAVE PREDICTION MODEL
                  CDC 3200
 83 FORTRAN
                                SINGULAR WAVE PREDICTION MODEL
 22 FORTRAN
                  IBM 360
                                SPECIFIC CONDUCTIVITY WITH PRESSURE EFFECT
                  CDC 1604
 87 FORTRAN
                            GCEAN CLIMATCLCGY ANALYSIS MODEL ANALYS
                            MIXED LAYER CEPTH ANALYSIS MODEL MECMLD
                 CDC 3100
 88 FORTRAN
 88 FORTRAN
                  CDC 3100
                                ATMOSPHERIC WATER CONTENT MODEL
                 CDC 1604
CDC 7600
CDC 3100
                              WIND COMPUTATION FROM SHIP OBSERVATIONS TRUWIND CPTIMIZED MULTI-LAYER HN MOCEL OPTIMIZED MULTI-LAYER HN MODEL
 89 FORTRAN
 75 FORTRAN
75 FORTRAN
 75 FORTRAN
                 CDC 6500
                                MEAN CRIFT ROUTINE
                  CDC 1604
 75 FORTRAN
                                MEAN DRIFT ROUTINE
120 FCRTRAN
                  IBM 360/65
                                SEQUENTIAL PLCTTING
                 UNIVAC 1108 OVERLAY PLOTTING CVLPLT UNIVAC 1108 RAY PATH SO4348
121 FORTRAN
99 FORTRAN
 76 FERTRAN
                  CDC 6500
                                SEARCH AND RESCUE FLANNING NSAR
 57 FORTRAN
                  CDC 6600
                                GENERALIZED STOCK PRODUCTION MODEL PRODFIT
 57 FORTRAN
                  B 6700
                                GENERALIZED STOCK PRODUCTION MODEL PRODFIT
 87 FORTRAN
                  B 6700
                                SUMMARIZES WEATHER REPORTS
97 FORTRAN
                 CDC 3100
                              SOUND SPEED COMPUTATION MODEL SOVEL
                 CDC 3200
 97 FORTRAN
97 FORTRAN
                 CDC 1604
                              SCUND SPEED CCMPUTATION MODEL SOVEL
123 FORTRAN
                  CDC 6600
                                DISPLAYS VHRR SATELLITE DATA V5DMD
123 FORTRAN
                  IBM 360/195 MICROFILM PLCTS OF VHRR SATELLITE DATA IBM 1800 BARTLETT'S CURVE FITTING
139 FORTRAN
136 FORTRAN
                  18M 1800
                                CLUSTER ANALYSIS
                  IBM 1800
103 FORTRAN
                                SATELLITE NAVIGATION
 13 FORTRAN
                  CDC 3600
                                CONVERTS STD DATA RDEDTP
 13 FORTRAN
                 CDC 3600
                                CORRECTS STD DATA IPMOD
                                LENGTH FREQUENCY ANALYSIS LENFRE
 56 FERTRAN
                  B 6700
 56 FORTRAN
                  8 6700
                                YIELD PER RECRUIT FOR MULTI-GEAR FISHERIES
57 FORTRAN
                  B 6700
                               A GENERALIZEC EXPLLITED POPULATION SIMULATOR
 57 FORTRAN
                               A GENERALIZED EXPLOITED POPULATION SIMULATOR
                 CDC 6600
117 FORTRAN
                  CDC CYBER X-Y PLOTS IN A FLEXIBLE FORMAT MEDSPLOT
 4 FORTRAN
                  CDC 6400
                                DATA MGT SYS FOR PHYS CHEM DATA OCEANSV
                  IBM 360/40
IBM 360/40
 85 FORTRAN
                                WATER WAVE TEACHING AIDS PRGF1 WATER WAVE TEACHING AIDS UMAX1
85 FORTRAN
 85 FORTRAN
                 IBM 360/40
                                WATER WAVE TEACHING AIDS UTMAX1
                                WATER WAVE TEACHING AIDS WMAX1
 85 FORTRAN
                 IEM 360/40
                IBM 360/40
                                WATER WAVE TEACHING AIDS LENGT
 85 FORTRAN
 85 FORTRAN
                IBM 360/40
                                WATER WAVE TEACHING AIDS DETRND
```

```
85 FORTRAN
                 IBM 360/40
                              WATER WAVE TEACHING AIDS WTMAX2
                              WATER WAVE TEACHING AIDS UDFT1 WATER WAVE TEACHING AIDS WOFT1
 85 FORTRAN
                 IBM 360/40
 85 FORTRAN
                 IBM 360/40
 85 FORTRAN
                 IBM 360/40
                              WATER WAVE TEACHING AIDS UTCFT1
 85 FORTRAN
                 IBM 360/40
                              WATER WAVE TEACHING AIDS WTCFT1
 85 FORTRAN
                 IBM 360/40
                              WATER WAVE TEACHING AIDS AUTCOV
                              WATER WAVE TEACHING AIDS CRSCOV WATER WAVE TEACHING AIDS FOURTR
 85 FORTRAN
                 IBM 360/40
 85 FORTRAN
                 IBM 360/40
 86 FORTRAN
                 IBM 360/40
                              WATER WAVE TEACHING AIDS PRCFILE
 86 FORTRAN
                              WATER WAVE TEACHING AIDS REFLI
                 IBM 360/40
 86 FCRTRAN
                 IBM 360/40
                              WATER WAVE TEACHING AIDS FORCE AND MOVEMENT
 85 FORTRAN
                 IBM 360/40
                              WATER WAVE TEACHING AIDS EDSIT
 63 FORTRAN
                B 6700
                              YIELD CURVES WITH CONSTANT RATES TOPF2
 63 FORTRAN
                              EUMETRIC YIELC TCPF3
                B .6700
 64 FORTRAN
                B 6700
                              PIECEWISE INTEGRATION OF YIELD CURVES TCPF4
64 FORTRAN
                B 6700
                              PIECEWISE INTEGRATION OF YIELD CURVES
 65 FORTRAN
                B 6700
                              CONSTANTS IN SCHAEFER'S MODEL TCPF6
 65 FORTRAN
                B 6700
                              SCHAEFER LOGISTICS MODEL OF FISH PRODUCTION
 65 FERTRAN
                 8 6700
                              FITS GENERALIZED STOCK PRODUCTION MODEL TOPF8
65 FORTRAN
                              BIOMETRY-LINEAR REGRESSION ANALYSIS TCSAL
                 B 6700
 66 FORTRAN
                 B 6700
                              GENERALIZED WEIGHTED LINEAR REGRESSION
 66 FORTRAN
                B 6700
                              LINEAR REGRESSION, BOTH VARIABLES
 66 FORTRAN
                B 6700
                              BIOMETRY-PRODUCT-MCMENT CORRELATION
 67 FORTRAN
                 8 6700
                              COOLEY-LONNES MULTIPLE-REGRESSION
 67 FORTRAN
                B 6700
                              BICMETRY-GCCCNESS OF FIT
 67 FORTRAN
                 B 6700
                              BIOMETRY-BASIC STATISTIC FOR UNGROUPED DATA
 68 FORTRAN
                 B 6700
                              BIOMETRY-EASIC STATISTIC FOR GROUPED DATA
                              BIOMETRY-SINGLE CLASSIFICATION ANOVA
 68 FORTRAN
                B 6700
 68 FORTRAN
                 B 6700
                              BIOMETRY-FACTORIAL ANGVA TCSD2
 69 FORTRAN
                B 6700
                              BIOMETRY-SUM OF SQUARES STP TCSD3
 69 FORTRAN
                B 6700
                              BIOMETRY-STUCENT-NEWMAN-KEULS TEST TCSD4
 69 FORTRAN
                B 6700
                              BIOMETRY-TEST OF HUMOGENEITY
 69 FORTRAN
                B 6700
                              BICMETRY-TEST OF ELUALITY
 70 FORTRAN
                B 6700
                              BICMETRY-TUKEY'S TEST
 70 FORTRAN
                B 6700
                              BICMETRY-KRUSKAL-WALLIS TEST TCSE4
                              BIGMETRY-FISHER'S EXACT TEST TOSES
 70 FORTRAN
                B 6700
 71 FORTRAN
                              BIOMETRY-R X C TEST OF INDEPENDENCE MAP
                 B 67C0
 29 FORTRAN
                              NUMERICAL MCL ESTUARY DYNAMICS & KINEMATICS
 28 FORTRAN
                              SALINITY DISTRIBUTION IN ONE-DIMENSIONAL ESTUARY
  1 FORTRAN
                HP 2115A
                              DIGITIZES STC DATA DEEP
                HP 2115A
  2 FORTRAN
                              STD PROCESSING WET
                              NORMAL DISTRIBUTION SEPARATOR TOPAL
 58 FORTRAN
                B 6700
 58 FORTRAN
                B 6700
                              SPAWNER-RECRUIT CURVE FITTING TCPA2
 58 FORTRAN
                B 6700
                              WEIGHT-LENGTH CURVE FITTING TCPA3
                              AGE CCMPOSITION ESTIMATION TCPB1
 59 FORTRAN
                B 6700
 59 FORTRAN
                B 6700
                              ESTIMATE CATCH NUMBERS PERCENT WEIGHT
 59 FORTRAN
                B 6700
                              LENGTH-FREQUENCY DISTRIBUTION
                              VON BERTALANFFY GROWTH CURVE FITTING TOPC1
 60 FORTRAN
                B 6700
60 FORTRAN
                8 6700
                              VON BERTALANFFY GROWTH UNEQUAL AGE INTERVAL
60 FORTRAN
                B 6700
                              VON BERTALANFFY GROWTH EQUAL AGE INTERVAL
61 FORTRAN
                B 6700
                              VON BERTALANFFY GROWTH CURVE FITTING TOPC4
64 FORTRAN
                              ESTIMATION OF LINEAR GROWTH
                B 6700
61 FORTRAN
                8 6700
                              FISHING POWER ESTIMATION TOPDI
62 FORTRAN
                B 6700
                              SURVIVAL RATE ESTIMATION TOPE1
 63 FORTRAN
                8 6700
                              FISHING MORTALITIES ESTIMATION TOPE2
 63 FORTRAN
                B 6700
                              RELATIVE YIELD PER RECRUIT
                              INTERNAL WAVE OSCILLATIONS ZMODE
17 FORTRAN
                CDC 6600
                CDC 7600
                              INTERNAL WAVE CSCILLATIONS ZMODE
17 FORTRAN
 87 FORTRAN
                CDC 6400
                              PYRANCMETER AND RALICMETER TIME SERIES RAD
152 FORTRAN
                IBM 360/65
                              XBTQKCUT
18 FORTRAN
                IBM 360/65
                              ISENTROPIC INTERPOLATION
18 FORTRAN
                IBM 360/65
                              SIGMAT
```

```
18 FORTRAN
                               IBM 360/65
                                                            SALINITY FROM CONDUCTIVITY T P SALINE
                               IBM 360/65
     19 FORTRAN
                                                           VOLUME TRANSPORT FUNCTION QFUN
    22 FCRTRAN
                                  IBM 360
                                                            CO2 AND DC SAT
                                IBM 360/65
    97 FORTRAN
                                                            SOUND VELCCITY WILSONS FORMULA WESNO
    97 FORTRAN
                                IBM 360/65
                                                            SOUND VELOCITY WILSONS FORMULA SVELFS
    97 FORTRAN
                                IBM 360/65
                                                            SOUND VELOCITY WILSONS FORMULA VELPRS
   116 FCRTRAN
                                CDC 3300
IBM 360/50
                                                           VERTICAL BAR GRAPHS
                                                           CONSISTENCY OF PHYSICAL AND CHEMICAL DATA
      4 FORTRAN
                                                            CALCULATION OF THERMOMETRIC VALUES
      4 FORTRAN
      4 FORTRAN
                                                            STATICN DATA SYSTEM FINAL VALUES
   102 FORTRAN
                                                            RAY TRACING KLERER-MAY USER LANGUAGE
                           IBM 7090
   135 FORTRAN
                                                           FOURIER ANALYSIS L101
                               IBM 7090
   134 FORTRAN
                                                           TWO-DIMENSICNAL AUTCCCRRELATION
   134 FORTRAN
                                  IBM 1401
                                                           TWO-DIMENSIONAL AUTGCORRELATION
                                CDC 3100
   118 FORTRAN
                                                           SECTION PLOTTING
  118 FORTRAN
                           CDC 3150 CURRENT METER DATA PROCESSING SYSTEM TIDE
IBM 7074 LEAST SQUARES PLOT
UNIVAC 1108 TEMPERATURE SALINITY CORRECTIONS CURVEFIT N1S512
PDP-9 BARTLETT'S CURVE FITTING
                                                           SECTION PLCTTING
                               PDP-8
    79 FORTRAN
   139 FORTRAN
   139 FORTRAN
   139 FORTRAN
   121 FORTRAN
                                                           PRODUCES CENTEUR CHARTS GRIEIT
   121 FORTRAN
                                                            PRODUCES CENTEUR CHARTS AUTOMATED CONTOUR
                          IBM 7074 CRITICAL ACCUSTIC RATIO
UNIVAC 1108 SOUND VELCCITY FOR MARINE SEDIMENTS
IBM 7074 LIGHT AND SCUND INSTRUCTION B
   100 FORTRAN
    97 FORTRAN
    98 FORTRAN
    45 FORTRAN
                                IBM 7074
                                                           LIGHT AND SGUND INSTRUCTION D
  144 FCRTRAN
                                IBM 7074
                                                           BATHYMETRIC CATA RECUCTION
                               IBM 7074
    14 FERTRAN
                          IBM 7074
IBM 7074
IBM 7074
IBM 7074
IBM 7074
                                                           MONTHLY SCNIC LAYER DEPTH
    14 FORTRAN
                                                           VERTICAL TEMPERATURE GRADIENTS
   137 FORTRAN
                                                           SINGLE INTEGRATION
  111 FORTRAN
                                                           GEODETIC DATUM REDUCTION
  111 FCRTRAN
                                                           GEODETIC POSITION COMPUTATION AND PLOT
   111 FORTRAN
                                                           ASTRONOMIC LATITUDE
                          CDC 3100
IBM 7074
IBM 7074
   112 FORTRAN
                                                           SOUNDING PLCT
   112 FORTRAN
                                                           SCUNDING PLCT
   112 FORTRAN
                                                           SINGLE INTEGRATION SODANC INVERSE
                                CDC 3100
   112 FERTRAN
                                IBM 7074
    89 FORTRAN
                                                           SOLAR RADIATION CONVERSION
                                                       WIND STRESS
TWC-DIMENSIC
PREDICTION C
CLCUD COVER
                               IBM 7074
    89 FORTRAN
                                IBM 7074
IBM 7074
IBM 7074
    89 FCRTRAN
                                                           TWC-DIMENSIONAL POWER SPECTRUM FOR SWOP II
    90 FORTRAN
                                                           PREDICTION OF VERTICAL TEMPERATURE CHANGE
    90 FORTRAN
                                                           CLCUD COVER AND DAILY SEA TEMPERATURE
                               IBM 7074
    46 FORTRAN
                                                           SEAMCUNT MAGNETIZATION
    46 FORTRAN
                               IBM 7074
                           IBM 7074 GBSERVATION CI
UNIVAC 1108 SEDIMENT SIZE
                                                           CBSERVATION CRAPING GRAVITY
    48 FORTRAN
76 FURTHAN
109 FORTRAN
109 FORTRAN
109 FORTRAN
109 FORTRAN
100 FORTRAN
110 FOR
    76 FORTRAN
                                  IBM 7074
                                                            CURRENT METER TURBULENCE
                                                           WATER DISPLACEMENT DISPLA
                                                           DISTANCE AND AZIMUTH CIRAZD
                                                           LORAN TO GEOGRAPHIC AND/GEOGRAPHIC TO LORAN
                                                           LORAN CCORDINATE CLMPUTATION
                                                            INTERPOLATION FOR LCEANOGRAPHIC DATA
                                                           INTERPOLATION FOR CCEANOGRAPHIC DATA
                                                           CURRENT METER DATA CREATE-C
                                                           CURRENT METER DATA CURRENT
                                                           CURRENT METER DATA CURRPLOT
                               CDC 3300 CURRENT METER DATA SPECTRUM CDC 6400 HORIZONTAL RANGE
                          CDC 6400 HORIZONTAL RANGE
CDC 3800 LINE PRINTER PLCTS
CDC 3800 INTERNAL GRAVITY WAVES DISPER
   120 FORTRAN
    16 FORTRAN
```

```
107 FORTRAN
                CDC 3800
                              ANNOTATED TRACK ON STEREOGRAPHIC PROJECTION
 89 FORTRAN
                CDC 3800
                              MIE SCATTERING COMPUTATIONS
                            PLOTS TRACK AND DATA PROFILE TRACK
47 FORTRAN
                CDC 3600
47 FORTRAN
                CDC 3800
                              PLCTS TRACK AND DATA PROFILE TRACK
                CDC 3800
CDC 3600
 47 FORTRAN
                              GECDATA
47 FORTRAN
                              GECDATA
47 FORTRAN
                €DC 3600
                              MAGNETIC SIGNATURES MAGPLOT
47 FORTRAN
                CDC 3800
                              MAGNETIC SIGNATURES MAGPLOT
107 FORTRAN
                CDC 3600
                              ANNCTATED TRACK ON STEREOGRAPHIC PROJECTION
125 FORTRAN
                UNIVAC 1108 SPECTRAL ANALYSIS SUBROUTINES
47 FORTRAN
                UNIVAC 1108 TRUE CCEAN DEPTH FATHCR
142 FORTRAN
                CDC 3300
                              SOLVE ALGEBRAIC EQUATIONS MATRIX
                CDC 3300
121 FORTRAN
                              PHYSICAL CATA PLCT FRAME
99 FORTRAN
                CDC 3300
                              ACOUSTIC PERFORMANCE AND EVALUATION
94 FORTRAN
                CDC 3300
                              SOUND REFRACTION CORRECTIONS FITIT
15 FORTRAN
                              SIGMA-T INVREJ
15 FORTRAN
                              STD PROCESSING CCEANDATA
15 FORTRAN
                              INTERNAL WAVES WITCOMB
.84 FORTRAN
                IBM 360/165 WAVE INTERACTION WITH CURRENT CAPGRAY
                IBM 370/165 ESTUARINE MODEL NONLNRA
24 FORTRAN
                CDC 6400 UPWELLING CSTLUPWL
CDC 3300/CS3 TIME SERIES ARAND ACFFT
26 FORTRAN
126 FORTRAN
                CDC 3300/0S3 TIME SERIES ARAND ACORR
126 FORTRAN
126 FORTRAN
                CDC 3300/OS3 TIME SERIES ARAND ACRPLT
126 FORTRAN
                CDC 3300/0S3 TIME SERIES ARAND ALIGN
                CDC 3300/0S3 TIME SERIES ARAND AMPACO
126 FORTRAN
  1 FORTRAN I
                 IBM 1620
                              TRANSPORT COMPUTATIONS FROM ATMOSPHERIC PRESSURE
                IBM 7094
146 FORTRAN II
                              STATION DATA REDUCTION SYNOP
 5 FORTRAN II
                PDP 8E
                             MASS TRANSPORT AND VELOCITIES GEOMASS
79 FORTRAN II
                              PRCCESSES CURRENT INSTRUMENT OBSERVATIONS
                IBM 1620
94 FORTRAN II
                UNIVAC 1108 BOTTCM REFLECTIVITY
148 FORTRAN II
                CDC 1604
                              FORTRAN ACCESS TO SCIENTIFIC DATA FASD
48 FORTRAN II
                IBM 1620
                              SOIL AND SECIMENT ENGINEERING TEST DATA
                            REDUCTION AND DISPLAY OF DATA ACQUIRED AT SEA
145 FORTRAN II
                IBM 1130
101 FORTRA'N II
                IBM 7090
                            ACOUSTIC RAY TRACING
138 FORTRAN II
                CDC 3100
                          LEAST SQUARES CURVE FITTING 2 3 & 4 DIMENSIONS
139 FORTRAN II
                GE 225
                             CURVE FITTING CRVFT
                CDC 3100 SALINITY ANCMALY ISALBP
CDC 3100 OXYGEN SATURATION CXYGEN ANGMALY ISATBP
  2 FORTRAN II
  3 FORTRAN II
 3 FORTRAN II
                PDP-8
                             PLOT THETA-S CURVES
  3 FERTRAN II
                CDC 3100
                            PLCT THETA-S CURVES
  3 FORTRAN II
                            PLCTS STATICN PCSITICNS
                CDC 3100
  3 FORTRAN II
                PDP-8
                              PLCTS STATICN POSITIONS
                          PLUIS STATION POSITIONS
NUTRIENT CONCENTRATION PEAKS
ICE DRIFT ANALYSIS/FORECAST
INDIVIDUAL PCINT GENERATOR FOR MAP PROJECTIONS
  3 FORTRAN II
                CDC 3150
91 FORTRAN II
                CDC 160A
110 FGRTRAN II
                IB7 7074
                IB7 7074
                             INDIVIDUAL PCINT GENERATOR FOR DISTANCE
111 FORTRAN II
                CDC 3300
CDC 3300
                              GEOPHYSICAL DATA REDUCTION AND PLOTTING
39 FORTRAN IV
39 FORTRAN IV
                              PRCCESSING/CISPLAY MARINE GEOPHYSICAL DATA
                CDC 3300
39 FORTRAN IV
                              MARINE SEISMIC DATA PEDUCTION AND ANALYSIS
39 FORTRAN IV
                CDC 3300
                              A LIBRARY OF GEOPHYSICAL SUBROUTINES GLIB
  7 FORTRAN IV
                IBM 360/65
                              REAC CALC INTERP STATION DATA CAPRICORN
  7 FORTRAN IV
                IBM 360/65
                              STATION DATA CALCULATIONS F3
  8 FORTRAN IV
                IBM 360/65
                              PLCTS STATICA DATA PLTEDT
                              CALCULATES STATION DATA SECPG
  8 FORTRAN IV
                IBM 360/65
                 IBM 360/65 PLCTS MAPS GRIDS TRACKS MAP
103 FORTRAN IV
  5 FERTRAN IV
                 B 6700
                              CCEANCGRAPHY STATION COMPUTER PROGRAM
25 FORTRAN IV
                IBM 360
                              DYNAMIC DETERMINISTIC SIMULATION SIMUDELT
                              WAVE BCTTCM VELCCITY
83 FORTRAN IV
                 IBM 360/75
                IBM 7090-94 SEA ICE STUDIES YARIT IBM 7090-94 SEA ICE STUDIES FLIP
91 FORTRAN IV
91 FORTRAN IV
                IBM 7090-94 SEA ICE STUDIES SALPR
91 FORTRAN IV
```

```
91 FORTRAN IV
                IBM 7090-94
                              SEA ICE STUDIES RITE
                CDC 6600
38 FORTRAN IV
                              CONVECTION INVARIABLE VISCOSITY FLUID CONVEC
116 FORTRAN IV
                CDC 3600
                              PLOTTING PROGRAM PROFL
  2 FORTRAN IV
                CDC 6600
                              STD DATA PRCCESSING
 25 FORTRAN IV
                IBM 360/65
                              MIT SALINITY INTRUSION PROGRAM
 28 FORTRAN IV
                IBM 370
                              ESTUARINE CHEMISTRY MYACHEM
 28 FORTRAN IV
                IBM 370
                              ESTUARINE TIDES
 24 FORTRAN IV
                UNIVAC 1108
                              THREE DIMENSICNAL ESTUARINE CIRCULATION MODEL
50 FORTRAN IV
                UNIVAC 1108 INVERSE PROBLEM IN ECOSYSTEM ANALYSIS
  5 FORTRAN IV
                PDP 10
                              STATICN DATA THIRP
                PDP 10
  5 FORTRAN IV
                              THERMCMETER CORRECTION THERMOMETRIC DEPTH
147 FORTRAN IV
51 FORTRAN IV
                IBM 360/65
                              READS NCDC STATION DATA TAPE
                CDG 6600
                             PRODUCTIVITY CXYGEN
                CDC 6600
 52 FORTRAN IV
                              SPECIES DIVERSITY JCB
 52 FORTRAN IV
                CDC 6600
                              PRODUCTIVITY ECOPROD
27 FORTRAN .IV
                CDC 6400
                              THREE-DIMENSIONAL SIMULATION PACKAGE AUGUR
52 FORTRAN IV
                IBM 7094
                              CONCENTRATIONS PER SQUARE METER OF SURFACE
118 FORTRAN IV
                XDS SIGMA 7
                             HCRIZONTAL HISTOGRAMS HISTO
                XDS SIGMA 7
                              PRINTER PLCTS LISPLC
118 FORTRAN IV
                XDS SIGMA 7
                              PLOT OF FREQUENCY DISTRIBUTION THISTO
119 FORTRAN IV
119 FORTRAN IV
                XDS SIGMA 7
                              VELCCITY VECTOR AVERAGES VECTAV
119 FORTRAN IV
                XDS SIGMA 7
                              PROGRESSIVE VECTORS PROVEC
                              PLOTS DATA ALONG TRACK
119 FORTRAN IV
                XDS SIGMA 7
119 FORTRAN IV
                XDS SIGMA 7
                              PROFILE VERSUS TIME OR DISTANCE
120 FORTRAN IV
                HP MINI
                              PLOTS NAVIGATION WITH ANY OTHER DATA TYPE DEEP6
102 FORTRAN IV
                XDS SIGMA 7
                              RAYTRACE
97 FORTRAN JV
                XDS SIGMA 7
                              SOUND VELOCITY SONVEL
97 FORTRAN .IV
                XDS SIGMA 7
                              DEPTH CORRECTION MTCOR SOUND VELOCITY
148 FORTRAN IV
                XDS SIGMA 7
                              EDITING FCR WHOI FORMAT SCRUB
                              THERMCMETER CORRECTION TOPLO
143 FORTRAN IV
                XDS SIGMA 7
                HP 2100
  8 FORTRAN IV
                              STATION DATA HYD2
  8 FORTRAN IV
                XDS SIGMA 7
                              BRUNT-VAISALA FREQUENCY OBVFRQ
  9 FORTRAN IV
                XDS SIGMA 7
                             DYNAMIC HEIGHT DYNHT
                              POTENTIAL ENERGY ANOMALY PEN
  9 FORTRAN .IV
                XDS SIGMA 7
  9 FORTRAN IV
                XDS SIGMA 7
                              VARIOUS PARAMETERS FROM STATION DATA OCCOMP
                XDS SIGMA 7
  9 FORTRAN IV
                              SPECIFIC VOLUME ANIMALY SVANOM
  9 FCRTRAN IV
                XDS SIGMA 7
                              PRESSURE SUBRCUTINE PRESS
 10 FORTRAN IV
                XDS SIGMA 7
                              READS STATICN DATA
 10 FORTRAN .IV
                XDS SIGMA 7
                              GEOSTROPHIC VELOCITY DIFFERENCE VEL
 10 FORTRAN .IV
                XDS SIGMA 7
                              VOLUME TRANSPORT VIR
                XDS SIGMA 7
                              SIGMA-T SIGMAT AND DSIGMT
 10 FORTRAN IV
52 FORTRAN IV
                CDC 6400
                              COMBINED CHLOROPHYLL AND PRODUCTIVITY
 53 FORTRAN IV
                IBM 7094
                              PHYTOPLANKTON NUMBERS VOLUME SURFACE AREA
134 FORTRAN IV
                UNIVAC 1108
                             SPECTRAL ANALYSIS OF TIME SERIES
136 FORTRAN IV
56 FORTRAN IV
                              PRCBABILITY CISTRIBUTION WEIBUL
                IBM 370
                IBM 370
                              RESOURCES ALLCCATION IN FISHERIES MGT PISCES
                .IBM 370
56 FORTRAN IV
                              WATER RESCURCES TEACHING GAME DAM
 25 FORTRAN IV
                IBM 1130
                              BEACH SIMULATION MODEL
29 FORTRAN IV
                IBM 1130
                              BEACH AND NEARSHORE MAPS A-S
113 FORTRAIN IV
                IBM 360/65
                              NOS SCIENTIFIC SUBROUTINE SYSTEM ANGLE
 93 FORTRAN IV
                CDC 1604
                              SCUND SCATTERING BY ORGANISMS SKAT
 72 FORTRAN IV
                CDC 6500
                              THERMAL POLLLTION MODEL
 72 FORTRAN' IV
                CDC 1604
                              THERMAL POLLUTION MODEL
134 FORTRAN IV
                IBM 360
                              TIME SERIES ANALYSIS BLACKY
 83 FORTRAN IV
                CDC 6500
                              FRENCH SPECTRC-ANGULAR WAVE MODEL
 83 FORTRAN IV
                CDC 7600
                              FRENCH SPECTRC-ANGULAR WAVE MODEL
                CDC 3100
CDC 6500
 83 FORTRAN IV
                              SURF PREDICTION MODEL
 24 FORTRAN IV
                              MULTI-LAYER HYDRODYNAMIC-NUMBERICAL MODEL
 24 FORTRAN IV
                CDC 7600
                              MULTI-LAYER HYDRODYNAMICAL-NUMERICAL MCCEL
 24 FORTRAN IV
                CDC 6500
                              SINGLE LARGE HYDRODYNAMICAL-NUMERICAL MCDEL
 24 FORTRAN IV
                              SINGLE LARGE HYDROCYNAMICAL-NUMERICAL MODEL
                IBM 360
 88 FORTRAN IV
                              HURRICANE HEAT POTENTIAL MODEL
                CDC 6500
```

```
88 FORTRAN IV CDC 6500 OCEAN-ATMCSPHERE FEEDE
80 FORTRAN 60 IBM 360/195 TIDES IN THE CPEN SEA
                                                                   OCEAN-ATMCSPHERE FEEDBACK MODEL
                                                                    VARIANCE AND STANDARD DEVIATION SUMMARY
  15 FORTRAN EXT CDC 6500
                                     UNIVAC 1108 SCNAR IN REFRACTIVE WATER
UNIVAC 1108 SONAR IN REFRACTIVE WATER
UNIVAC 1108 SORTS SCUND RAY DATA RAY SORT
UNIVAC 1108 PATTERN FUNCTION CALCULATIONS
101 FORTRAN IV
101 FORTRAN IV
101 FORTRAN IV
  45 FORTRAN IV
                                      UNIVAC 1108 SMOOTHING DATA USING THE CUBIC SPLINE
141 FORTRAN IV
  94 FORTRAN IV
                                      UNIVAC 1108 PROPAGATION LOSS FAST FIELD PROGRAM
  14 FORTRAN EXT CDC 6500
                                                                 CCEANCGRAPHIC DATA COMPUTATION TPOONV
136 FORTRAN IV
                                      IBM 360/65
                                                                   EXTENDED NORMAL SEPARATOR PROGRAM ENCRMSEP
                                                                CXYGEN PHOSPHATE CENSITY PLOTS
GENERAL MERCATOR PLOT
124 FORTRAN IV
                                      IBM 360/65
124 FORTRAN IV
                                     IBM 360/65
112 FORTRAN IV
                                      IBM 360/30
                                                                ADJUSTS A STATE PLANE COORDINATE TRAVERSE
113 FORTRAN IV
                                      IBM 360/65
                                                                NGS SCIENTIFIC SUBROUTINE SYSTEM ANLIS
113 FORTRAN IV
                                      IBM 360/65 NOS SCIENTIFIC SUBROUTINE SYSTEM APCTN
                                                                NOS SCIENTIFIC SUBROUTINE SYSTEM APCWN
NOS SCIENTIFIC SUBRCUTINE SYSTEM APOLY
NOS SCIENTIFIC SUBROUTINE SYSTEM CGSPC
NOS SCIENTIFIC SUBRCUTINE SYSTEM CUBIC
113 FCRTRAN IV
                                      IBM 360/65
113 FORTRAN IV
                                      IBM 360/65
                                                                    NOS SCIENTIFIC SUBROUTINE SYSTEM EXCEB
                                                                 NOS SCIENTIFIC SUBROUTINE SYSTEM GMLIC
113 FORTRAN IV
                                      IBM 360/65
                                                                NOS SCIENTIFIC SUBRCUTINE SYSTEM HIFIX
NOS SCIENTIFIC SUBROUTINE SYSTEM LORAN
NOS SCIENTIFIC SUBROUTINE SYSTEM OMEGA
NOS SCIENTIFIC SUBROUTINE SYSTEM SODIN
113 FORTRAN IV
                                      IBM 360/65
114 FORTRAN IV
                                      IBM 360/65
                                      IBM 360/65
114 FORTRAN IV
114 FORTRAN IV
                                      IBM 360/65
114 FCRTRAN IV
                                      IBM 360/65
                                                                    NOS SCIENTIFIC SUBROUTINE SYSTEM SODPN
                                      IBM 360/65 NOS SCIENTIFIC SUBROUTINE SYSTEM TPFIX
IBM 360/65 NOS SCIENTIFIC SUBROUTINE SYSTEM UTMCO
114 FORTRAN IV
114 FORTRAN IV
                                                                    HARMONIC ANALYSIS OF DATA AT TIDAL FREQUENCIES
                                      CDC 6600
  80 FORTRAN I.V
                                      CDC 6600 HARMONIC ANALYSIS OF DATA AT TIDAL FREQUENT CDC 6600 HURRICANE STORM SURGE FORECASTS SPLASH I HURRICANE STORM SURGE FORECASTS SPLASH II
  82 FORTRAN IV
                                    CDC 6600
IBM 360/195
IBM 360/195
IBM 360/195
ASTRONOMICAL TIDE PREDICTION
CDC 6600
CDC 6500
CDC 6600
C
  82 FORTRAN IV
  82 FORTRAN IV
  82 FORTRAN IV
  80 FORTRAN IV
  30 FORTRAN IV
  30 FORTRAN IV
  30 FORTRAN IV
  30 FORTRAN IV
  31 FORTRAN IV
  31 FORTRAN IV
 31 FORTRAN IV
  17 FORTRAN IV
  17 FORTRAN IV
  91 FORTRAN 60
145 FORTRAN IV
  37 FORTRAN IV
134 FORTRAN IV
  84 FORTRAN IV
104 FORTRAN IV
104 FORTRAN IV
104 FORTRAN IV
  12 FORTRAN IV
                                                                    PLOT TEMP LIST MIXED LAYER DEPTH WEEKPLCT
    4 FORTRAN IV
                                      CDC CYBER 74 DAILY SEAWATER CBSERVATIONS
 L35 FORTRAN IV IBM 360/40 SPECTRA PRCGRAMS DETRND AUTCOV CRSCOV FCURTR
25 FORTRAN IV IBM 360/65 MIT SALINITY INTRUSION PROGRAM
40 FORTRAN IV IBM 7074 COMPUTATION AND PLCTTING OF MAGNETIC ANCMALIES
L35 FORTRAN IV IBM 1130 ANALYSIS CF NON-LINEAR RESPONSE SURFACE
MULTIPLE DISCRIMINANT ANALYSIS MULCA
L03 FORTRAN IV IBM 1130 SATELLITE RISE AND SET TIMES ALERT ASORT
54 FORTRAN IV IBM 1130 YIELD PER RECRUIT RYLC BIOM
135 FORTRAN IV
135 FORTRAN IV
135 FORTRAN IV
103 FORTRAN IV
```

```
103 FORTRAN IV
                IBM 360/65
                              ASTRCNOMIC POSITION AZIMUTH METHOD
                              PERCENTAGE SATURATION OF OXYGEN IN ESTUARY
22 FORTRAN IV
                IBM 360/65
                IBM 360/65
                              WATER CHEMISTRY DIELECTRIC CONSTANT
 23 FORTRAN IV
                              GRAVITATIONAL ATTRACTION TWO-DIMENSIONAL BODIES
38 FORTRAN IV
                IBM 360/65
38 FORTRAN IV
                XDS SIGMA 7
                              X-RAY DIFFRACTION ANALYSIS
39 FORTRAN IV
                XDS SIGMA 7
                              MAGNETIC ANCMALIES MAG2D
                              PROFILE PLCTS TIME AXIS PROFL3
PROFILE PLCTS DISTANCE AXIS PFLDST
122 FORTRAN IV
                IBM 360/61
122 FORTRAN IV
                IBM 360/61
122 FORTRAN IV
                IBM 360/61
                              MAP FLCTS MAPPLT
38 FORTRAN IV
                IBM 1130
                              SEDIMENT GRAIN SIZE ANALYSIS
40 FORTRAN IV
                              REDUCTION DISPLAY STORAGE GEOPHYSICAL DATA
                IBM 1130
117 FORTRAN IV
                IBM 1130
                              PLCTS HYDRC CAST CATA PLOG
                              PLOTS STD DATA STP01
PLCTS TEMPERATURE-SALINITY PSAL 1
117 FORTRAN IV
                IBM 1130
118 FORTRAN IV
                IBM 1130
 1 FORTRAN IV
                              TRANSPORT CCMPUTATIONS FROM ATMOSPHERIC PRESSURE
                IBM 1130
                              STD CCMPUTATIONS STP02
 1 FORTRAN IV
                IBM 1130
 1 FORTRAN IV
                IBM 1130
                              HYCRC CAST CCMPUTATIONS
                UNIVAC 1108
UNIVAC 1108
42 FORTRAN IV
                             LISTS RAW DATA 2LIST
                             PLCTS TRACKLINE QCKDRAW
42 FORTRAN IV
42 FORTRAN IV
                UNIVAC 1108
                             PLOTS CONTOUR CROSSING INTERVALS DOUBLX
42 FORTRAN IV
                UNIVAC 1108
                             PLOTS GEOPHYSICAL DATA PLOT2
43 FORTRAN IV
                UNIVAC 1108
                              LISTS EVERY HUNCREUTH VALUE SNOOP
43 FORTRAN IV
43 FORTRAN IV
                UNIVAC 1108
UNIVAC 1108
                              NAVIGATION COMPUTATIONS TPNAV
                              EDITS GEOPHYSICAL DATA ZEDIT
                UNIVAC 1108
43 FORTRAN IV
                             GECPHYSICAL CATA CCNVERSION HANDY
44 FORTRAN IV
                UNIVAC 1108
                             LISTS GEOPHYSICAL DATA LISTP
44 FORTRAN IV
                UNIVAC 1108
                             COURSE, SPEEC, EOTVCS CORRECTION LOXNAV
44 FORTRAN IV
                UNIVAC 1108
                              CONVERTS GECPHYSICAL DATA PHONEY
                UNIVAC 1108
UNIVAC 1108
44 FORTRAN IV
                              SCUND VELCCITY VARIATION AND NAVIGATION FATHOM
45 FORTRAN IV
                              REGIONAL FIELD RESIDUAL MAGNETIC ANOMALY GAMMA
45 FORTRAN IV
                UNIVAC 1108
                              GRAVITY GAL
45 FORTRAN IV
                UNIVAC. 1108
                              PLOTS PROFILES OF GEOPHYSICAL DATA DISPLOT
46 FORTRAN IV
                UNIVAC 1108
UNIVAC 1108
                              CONVERTS DIGITIZER CATA DYGYT
46 FORTRAN IV
                              EDITS REDUCED GEOPHYSICAL DATA EDIT
125 FORTRAN IV
                CDC 6400
                              SCALAR TIME SERIES TEMPLT7
                              VECTOR TIME SERIES CURPLT6
78 FORTRAN IV
                CDC 6400
51 FORTRAN IV
                IBM 360
                              TCXICITY EICASSAY PROBIT ANALYSIS
139 FORTRAN IV
                              FITS POLYNCMIAL PSTERM
                IBM 360/65
142 FORTRAN IV
                IBM 360/65
                              CHECKS ANGLES TWOPI
142 FORTRAN IV
                CDC 6600
                              CHECKS ANGLES TWOP!
122 FORTRAN IV
                IBM 360/65
                              PLCTS SCATTERGRAM SCTGM4 SCTGMS
123 FORTRAN IV
                CDC 6600
                              X-Y PLOTS EBTPLT
                              REPRODUCE AND SERIALIZE DECK DUPE
148 FORTRAN IV
                CDC 6600
148 FORTRAN IV
                             FLAGS SUSPICIOUS DATA VALUES EDITQ
                IBM 360/65
144 FORTRAN IV
                IBM 360/65
                              JULIAN DAY CENVERSION JDAYWK
                IBM 360/65 JULIAN DATE CONVERSION ROUTINES JULDAY
144 FORTRAN IV
                IBM 360/65 JULIAN DATE CONVERSION ROUTINES JULIAN
144 FORTRAN IV
                              JULIAN DATE CONVERSION ROUTINES JULYAN
144 FORTRAN IV
                IBM 360/65
                IBM 360/65
144 FORTRAN IV
                              JULIAN DATE CONVERSION ROUTINES JULSEC
                              JULIAN DATE CONVERSION ROUTINES CESLUJ DAY OF THE WEEK NDAYWK
144 FORTRAN IV
                IBM 360/65
144 FORTRAN IV
                IBM 360/65
                              WET BULB TEMPERATURE WETBLA
17 FORTRAN IV
                CDC 6500
                              MARINE GECPHYSICAL DATA REDUCTION
41 FORTRAN IV
                IBM 360/65
41 FORTRAN IV
                IBM 360/65
                              PLCTS PROFILES OF BATHYMETRY AND MAGNETIC
153 FORTRAN IV
                IBM 360/65
                              XBSELECT
153 FORTRAN IV
                IBM 360/65
                              XBMSINV
153 FORTRAN IV
                IBM 360/65
                              XBGEOSUM
153 FORTRAN IV
                IBM 360/65
                              CANWMC
18 FORTRAN IV
                IBM 360/65
                              DYNAMIC DEPTH ANOMALY DYANCM
19 FORTRAN IV
                IBM 360/65
                              POTENTIAL TEMP AND DENSITY PODENS
19 FORTRAN IV
                IBM 360/65
                              VOLUME TRANSPORT VOLTRN
19 FORTRAN .IV
                IBM 360/65
                              COMPUTES PRESSURE PRESSR
```

```
IBM 360/65
                                                                  COMPUTE GREAT CIRCLE PATH GCIRC
115 FORTRAN IV
115 FORTRAN IV
                                      IBM 360/40
                                                                  MAP PROJECTIONS AND GRIDS MAP
  54 FORTRAN IV
                                      IBM 360
                                                                   PIGMENT RATIC
                                                                   SUCCESSION
                                      IBM 360
  54 FORTRAN IV
                                      IBM 360 SPECIES ABUNCANCE IBM 360/65 FITS A SMGOTH CURVE
  54 FORTRAN IV
                                      IBM 360
138 FORTRAN IV
                                      IBM 360/65 CALCULATES SPLINE COEFFICIENT SPLCOF
141 FORTRAN IV
                                      IBM 360/65 INTERPOLATING BY CUBIC SPLINE
141 FORTRAN IV
                                      IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASDIPES
IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASSAMPC
IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASEINV
150 FORTRAN IV
150 FORTRAN IV
150 FORTRAN IV
                                      IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASCOI
150 FORTRAN IV
                                      IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASVPRT
150 FORTRAN IV
                                     IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GVAREFRM IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS CANADA IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASVASUM
150 FORTRAN IV
150 FORTRAN IV
150 FORTRAN IV
150 FORTRAN IV
                                      IBM 360/65 FILE INCEPENCENT GEN APP SYS GAS ALTERGAS
151 FORTRAN IV
151 FORTRAN IV
                                      IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASB
                                      IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS NODCSQ IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS NAMES IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS SD2 GAS
151 FORTRAN IV
151 FORTRAN IV
151 FORTRAN IV
                                     CDC 3300
                                                                  CXYGEN CPLCT
  11 FORTRAN IV
  11 FORTRAN IV
                                      CDC 3300
                                                                 CHLORCPHYLL CHLO
                                     CDC 3300 SALINITY SALTY
CDC 3300 TEMPERATURE SALINITY CLASS VOLUME TSVOL
CDC 3300 THERMCMETER CORRECTION THERZ
CDC 3300 TRANSPORT XPCRT
CDC 3300 ICEBERG DRIFT ICE-PLCT
IBM 360 AREAL CONCENTRATION INTEGRATE
  11 FORTRAN IV
  11 FORTRAN IV
  12 FORTRAN IV
  12 FORTRAN IV
  91 FORTRAN IV
143 FORTRAN IV
                                     IBM 360 UNWEIGHTED AVERAGES AVERAGE UNIVAC 1108 STORM SURGE UNIVAC 1108 WAVE REFRACTION
143 FORTRAN IV
  84 FORTRAN IV.
  84 FORTRAN IV
  28 FORTRAN IV
                                      IBM 360/40 MATHEMATICAL MCDEL OF COASTAL UPWELLING
    3 FORTRAN IV : HP 2100A STD TABLES AND PLOTS STD
                                    HP 2100A STD TABLES AND PLOTS STD
CDC 3150 ALKALINITY ALCT
CDC 3150 GEGPHYSICAL DATA STORAGE AND RETRIEVAL GEOFILE
UNIVAC 1108 BOTTCM SEDIMENT DISTRIBUTION PLOT
CDC 6500 NORMAL MODE CALCULATIONS NORMOD 3
HP 2100S THERMCMETRIC CEPTH CALCULATION CAST
HP 2100S THERMCMETER DATA FILE HANDLER THERMO
CDC 3200 SEA SURFACE TEMPERATURES ANALYSIS
HP 2100S ANNOTES CHART
HP 2100S MERCATOR CHART CIGITIZATION ANTRK
HP 2100S MERCATOR CHART CIGITIZATION DGBTH
  22 FORTRAN IV CDC 3150
  47 FORTRAN IV
  48 FORTRAN IV
  93 FORTRAN IV
  16 FORTRAN IV
  16 FORTRAN IV
  16 FORTRAN IV
107 FORTRAN .IV
108 FORTRAN IV
                                   HP 2100S
TORRES
HP 2100S
HP 21
108 FERTRAN IV
108 FORTRAN IV
108 FORTRAN IV
108 FORTRAN IV
109 FORTRAN IV
  10 FORTRAN IV
  10 FCRTRAN IV
                                      XDS SIGMA 7 SPECIFIC VCLUME SPVCL
XDS SIGMA 7 STATISTICS FRCM WHGI FORMAT STATS
  10 FORTRAN IV
136 FORTRAN IV
                                                            LORAN OR CMEGA CONVERSION GEPOS
105 FORTRAN IV
                                      HP 2100S
                                      HP 3100A
105 FORTRAN IV
                                                                   CRUISE TRACK THERC
                                      XDS SIGMA 7 TRANSFORMATION OF SPHERICAL COORDINATES ROTGUT
XDS SIGMA 7 SUM OF FINITE ROTATIONS ON A SPHERE SUMROT
105 FORTRAN IV
106 FORTRAN IV
                                      XDS SIGMA 7 GECMAGNETIC FIELD MFIELD
  41 FORTRAN IV
                                      XDS SIGMA 7
XDS SIGMA 7
                                                                   WHOI BIOLOGY SERIES FTAPE WHOI BIOLOGY SERIES FLISHT
  50 FORTRAN IV
  50 FORTRAN IV
                                      XDS SIGMA 7 WHCI BIGLOGY SERIES CHKSPIT
  50 FORTRAN IV
  50 FORTRAN IV
                                    XDS SIGMA 7 WHOI BIGLOGY SERIES SELECT
```

```
50 FORTRAN IV XDS SIGMA 7 WHOI BIOLOGY SERIES CHANAT 50 FORTRAN IV XDS SIGMA 7 WHOI BIOLOGY SERIES PREPLOTG
                      XDS SIGMA 7 WHOI BIOLOGY SERIES PLOTSPECG
 50 FORTRAN IV
                      XDS SIGMA 7 WHOI BICLOGY SERIES STATAB
 50 FORTRAN IV
                      XDS SIGMA 7 CURRENT METER CLOCK SEQUENCE XTAL
XDS SIGMA 7 CURRENT METER CALIBRATION CASDEC
XDS SIGMA 7 CURRENT METER DATA REDUCTION AND EDITING CARP
 77 FORTRAN IV
 78 FCRTRAN IV
 78 FORTRAN IV
 53 FORTRAN IV
                      UNIVAC 1108 GENERATES ZOOPLANKTON TAXONOMIC DIRECTORY
 53 FORTRAIN IV
                      UNIVAC 1108 DEEP CCEAN ZCOPLANKTON DISTRIBUTION
                      UNIVAC 1108 DEEP OCEAN ZOOPLANKTON POPULATION STATISTICS
 53 FORTRAN IV
 26 FORTRAN IV
                      IBM 360
                                         MATHEMATICAL WATER QUALITY MODEL FOR ESTUARIES
 26 FORTRAN IV
                      IBM 360
                                         COMPUTATION OF FLOW THROUGH MASONBORD INLET NO
                      IBM 360
 26 FORTRAN IV
                                       CIRCULATION IN PAMLICG SOUND
                      UNIVAC 1108 CURVE FITTING VELCCITY PROFILE NEWFIT
138 FORTRAN V
 45 FORTRAN V
                      UNIVAC 1108 RAYLEIGH-MORSE BOTTCM REFLECTION COEFFICIENTS
138 FORTRAN V
                      UNIVAC
                                         FITTING A LEAST SQUARES DISTANCE HYPERPLANE
 99 FORTRAN V
                      UNIVAC 1108
                                         CONTINUOUS GRADIENT RAY TRACING SYSTEM CONGRATS
 93 FORTRAN V
                      UNIVAC 1108 NORMAL MODE PROPAGATION MODEL
 94 FORTRAN V
                      UNIVAC 1108
                                        BEAM PATTERNS AND WIDTHS GBEAM
                     UNIVAC 1108 STATISTICS ACOUSTIL MEASUREMENTS AND PREDI
UNIVAC 1108 PROPAGATION LOSS
UNIVAC 1108 AMDS PROPAGATION LOSS
UNIVAC 1108 REFORMATS DATA PLOTS TRACK CHART MASTRACK
 94 FORTRAN V
                                       STATISTICS ACOUSTIL MEASUREMENTS AND PREDICTIONS
 45 FORTRAN V
 45 FORTRAN V
121 FORTRAN V
                      UNIVAC 1108 WATER CLARITY
 14 FORTRAN V
                      UNIVAC 1108 IN-SITU CURRENT
UNIVAC 1108 CURRENT METER PRINT
 76 FORTRAN V
 77 FORTRAN V
                      UNIVAC 1108 CURRENT METER PLOT
UNIVAC 1108 CONVERT CURRENT ME
UNIVAC 1108 CURRENT METER DATA
 77 FORTRAN V
                                         CONVERT CURRENT METER TAPE CURRENT METER DATA MPRINTO
 77 FORTRAN V
 77 FORTRAIN V
 36 FORTRAN V
                      UNIVAC 1108
                                         TOWED SYSTEM DYNAMICS
                      UNIVAC 1108 TRAPEZOIDAL ARRAY DEPLOYMUNIVAC 1108 STEADY STATE CABLE LAYING
 36 FORTRAN V
                                        TRAPEZOIDAL ARRAY DEPLOYMENT DYNAMICS
 37 FORTRAN V
                      UNIVAC 1108 TOWED ARRAY CENFIGURATIONS UNIVAC 1108 TRAPEZCIDAL ARRAY DYNAMICS
 37 FORTRAN V
 37 FORTRAN V
 16 FORTRAN V
                      UNIVAC 1108 STD-S/V DATA S2049
                      UNIVAC 1108 STEADY STATE TRAPEZCICAL ARRAY CONFIGURATIONS
 32 FORTRAN V
                      UNIVAC 1108 ANCHOR LAST-BUDY SYSTEM DEVELOPMENT DYNAMICS UNIVAC 1108 CABLE TCWED BUCY CONFIGURATIONS IN A TURN UNIVAC 1108 FREE-FLOATING SPAR-ARRAY DYNAMICS UNIVAC 1108 FREE-FLOATING SPAR-BUDY DYNAMICS
 32 FORTRAN V
 33 FORTRAN V
 33 FORTRAN V
 33 FORTRAN V
 33 FORTRAN V
                      UNIVAC 1108
                                         SHIP SUSPENCED ARRAY DYNAMICS
 34 FORTRAN V
                      UNIVAC 1108
                                         BOCMERANG CORER DESCENT/ASCENT TRAJECTORIES
                     UNIVAC 1108
UNIVAC 1108
UNIVAC 1108
 34 FORTRAN V
                                        BUCY-SHIP DYNAMICS
 34 FORTRAN V
                                         BUCY-SYSTEM CYNAMICS
 34 FORTRAN V
                                       FIXED THIN LINE ARRAY DYNAMICS
                     UNIVAC 1108 FIXED THIN LINE ARRAY STEADY STATE CONFIGURATION
 35 FORTRAN V
 35 FORTRAN V
                      UNIVAC 1108 MARINE CORER DYNAMICS
 35 FORTRAN V
                      UNIVAC 1108 STEADY-STATE BUDY SYSTEM CONFIGURATIONS
                     UNIVAC 1108 STEADY-STATE SUBSURFACE BUOY SYSTM CONFIGURATION
UNIVAC 1108 TOWED ARRAY CYNAMICS
IBM 1130 THERMCMETER CORRECTION TCHK2
CDC 3100 TIME SERIES PLCTTING
 36 FORTRAN V
 36 FORTRAN V
146 FORTRAN VI
                     CDC 3100
PDP-8
TIME SERIES PLOTTING
PDP-8
TIME SERIES PLOTTING
CDC 6600
HYDROGRAPHIC CATA REDUCTION TWO FIVE
CDC 1604
MACHINE PLOTTING ON MERCATOR PROJECTION
CDC 3600
VERTICALLY ANALYZED CONTOURS VACOTS
CDC 3600
CDC 3800
GRASS UNDERWATER ACOUSTICS PREDICTION DISTOV
CDC 3800
GRASS UNDERWATER ACCUSTICS PREDICTION VFC
CDC 3800
GRASS UNDERWATER ACCUSTICS PREDICTION CTOUR
CDC 3800
GRASS UNDERWATER ACCUSTICS PREDICTION PREPLT
CDC 3800
GRASS UNDERWATER ACCUSTICS PREDICTION SERPENT
125 FORTRAN 32
125 FORTRAN 32
146 FORTRAN 63
121 FORTRAN 63
123 FORTRAN 63
 12 FORTRAN 63
100 FORTRAN .63
100 FORTRAN 63
100 FORTRAN .63
100 FORTRAN 63
100 FORTRAN 63
```

101 FORTRAN 63 101 FORTRAN 63 73 ANS FORTRAN 73 ANS FORTRAN 125 MS FORTRAN 125 MS FORTRAN 126 MS FORTRAN	CDC 3800 18M 360 18M 370 CDC 6400 CDC 3150	GRASS UNDERWATER ACCUSTICS PREDICTION RAPLOT GRASS UNDERWATER ACCUSTICS PREDICTION LCSSPLOT ECOLOGICAL STATISTICAL PROGRAMS ECOSTAT ECOLOGICAL STATISTICAL PROGRAMS ECOSTAT TIME SERIES ANALYSIS PROGRAMS TSAP TIME SERIES ANALYSIS PROGRAMS TSAP TIME SERIES—ANALOG TO DIGITAL A TO D
PL/1		
74 PL/1 74 PL/1 74 PL/1 74 PL/1 4 PL/1 72 PL/1 87 PL/1 151 PL/1 152 PL/1 152 PL/1 152 PL/1 153 PL/1 153 PL/1 153 PL/1 153 PL/1 154 PL/1 157 PL/1	IBM 360/168 IBM 360/168 IBM 360/168 IBM 360/85 IBM 370/168 IBM 360/65	LAGRANGIAN THREE PLINT INTERPOLATION LAGSPT
MISCELLANEGUS		
104 MAD 104 MAD 80 MAD 53 MAP 114 SPS 114 SPS	IBM 7090 IBM 7090 IBM 7090 IBM 7094 IBM 1620 IBM 1620	GENERAL MAP PROJECTION FINITE MAP PROJECTION DISTORTIONS THECRETICAL RACIAL TIDAL FORCE PHYTOPLANKTON NUMBERS VOLUME SURFACE AREA COMPUTES GEOGRAPHIC POSITIONS LORAN C VERSION2

HARDWARE INDEX

BURROUGHS

41	FCRTRAN		0	6700	MON DECIMINATES COUNTY CHONE CITTING TORCA
_	FORTRAN			6700	VON BERTALANFFY GROWTH CURVE FITTING TOPC4 FISHING POWER ESTIMATION TOPD1
	FORTRAN				
	FORTRAN			6700 6700	BIOMETRY-R X C TEST OF INDEPENDENCE MAP
			_		VON BERTALANFFY GROWTH CURVE FITTING TOPC1
	FORTRAN			6700	VON BERTALANFFY GROWTH UNEQUAL AGE INTERVAL
	FORTRAN			6700	VON BERTALANFFY GROWTH EQUAL AGE INTERVAL
	FORTRAN		_	6700	BICMETRY-TUKEY'S TEST
	FORTRAN			6700	BIOMETRY-KRUSKAL-WALLIS TEST TCSE4
	FORTRAN			6700	BIOMETRY-FISHER'S EXACT TEST TCSE5
	FORTRAN			6700	ESTIMATION OF LINEAR GROWTH
	FORTRAN			6700	PIECEWISE INTEGRATION OF YIELD CURVES TCPF4
	FCRTRAN			6700	PIECEWISE INTEGRATION OF YIELD CURVES
	FORTRAN			6700	NORMAL DISTRIBUTION SEPARATOR TCPA1
	FORTRAN			6700	SPANNER-RECRUIT CURVE FITTING TCPA2
	FORTRAN			6700	WEIGHT-LENGTH CURVE FITTING TCPA3
	FORTRAN			6700	BIOMETRY-BASIC STATISTIC FOR GROUPED DATA
	FCRTRAN			6700	BICMETRY-SINGLE CLASSIFICATION ANOVA
68	FORTRAN			670C	BICMETRY-FACTORIAL ANOVA TOSD2
5 7	FORTRAN		В	6700	A GENERALIZED EXPLCITED POPULATION SIMULATOR
134	ALGOL		В	6700	SPECTRAL ANALYSIS OF TIME SERIES
63	FORTRAN		В	670C	FISHING MCRTALITIES ESTIMATION TOPE2
63	FORTRAN		В	6700	RELATIVE YIELD PER RECRUIT
63	FORTRAN		В	6700	YIELD CURVES WITH CONSTANT RATES TOPF2
63	FORTRAN		В	6700	EUMETRIC YIELD TCPF3
59	FCRTRAN		В	6700	AGE CCMPOSITION ESTIMATION TOPB1
59	FORTRAN		В	6700	ESTIMATE CATCH NUMBERS PERCENT WEIGHT
59	FORTRAN		В	6700	LENGTH-FREQUENCY DISTRIBUTION
69	FORTRAN		В	6700	BICMETRY-SUM OF SQUARES STP TCSD3
69	FORTRAN			6700	BIOMETRY-STUDENT-NEWMAN-KEULS TEST TCSD4
	FORTRAN			6700	BIGMETRY-TEST OF HGMOGENEITY
69	FORTRAN			6700	BIOMETRY-TEST OF EQUALITY
	FORTRAN			6700	BIOMETRY-PROCUCT-MUMENT CORRELATION
	FORTRAN			6700	LENGTH FREQUENCY ANALYSIS LENFRE
	FORTRAN			6700	YIELD PER RECRUIT FOR MULTI-GEAR FISHERIES
	FCRTRAN	I۷		6700	CCEANEGRAPHY STATION COMPUTER PROGRAM
	FORTRAN			6700	GENERALIZED WEIGHTED LINEAR REGRESSION
	FORTRAN			6700	LINEAR REGRESSION, BOTH VARIABLES
	FORTRAN			6700	SURVIVAL RATE ESTIMATION TOPEL
	FORTRAN	τv		6700	PLCT TEMP LIST MIXED LAYER DEPTH WEEKPLCT
	ALGOL	- •		6700	CONSTANTS FOR HARMUNIC SYNTHESIS MEAN SEA TEMP
	FORTRAN			6700	CONSTANTS IN SCHAEFER'S MODEL TOPF6
	FORTRAN			6700	SCHAEFER LOGISTICS MCDEL OF FISH PRODUCTION
	FORTRAN			6700	FITS GENERALIZED STOCK PRODUCTION MODEL TOPF8
	FORTRAN			6700	BIOMETRY-LINEAR REGRESSION ANALYSIS TCSA1
	FORTRAN			6700	GENERALIZED STOCK PRODUCTION MODEL PRODEIT
	FORTRAN			6700	SUMMARIZES WEATHER REPORTS
	ALGOL			6700	SOUND VELECITY THRU SCLID SAMPLES DSDP/SON
	ALGOL			6700	MAILING LABELS
	ALGOL			6700	SAND SILT AND CLAY FRACTIONS DSDP/GRAIN
	FORTRAN			6700	COOLEY-LONNES MULTIPLE-REGRESSION
	FORTRAN			6700	BIOMETRY-GOCCNESS OF FIT
	FORTRAN			6700	
					BIGMETRY-BASIC STATISTIC FOR UNGROUPED CATA
	ALGOL ALGOL			6700 6700	STATION DATA RETRIEVAL HYDROSEARCH
147	ALGUL		O	0100	INTERACTIVE CALCULATIONS DSDP/CALC

CONTROL DATA CORPORATION

```
91 FORTRAN II CDC 160A
                              ICE DRIFT ANALYSIS/FORECAST
121 FORTRAN 63 CDC 1604
                              MACHINE PLOTTING ON MERCATOR PROJECTION
                              SCUND SCATTERING BY ORGANISMS SKAT
93 FORTRAN IV CDC 1604
89 FORTRAN
                 CDC 1604
                              WIND COMPUTATION FROM SHIP OBSERVATIONS TRUWIND
72 FORTRAN IV CDC 1604
                              THERMAL POLLUTION MODEL
                CDC 1604
CDC 1604
75 FORTRAN
                              MEAN DRIFT ROUTINE
97 FORTRAN
                              SOUND SPEED COMPUTATION MODEL SOVEL
87 FORTRAN
                CDC 1604
                              OCEAN CLIMATGLCGY ANALYSIS MODEL ANALYS
148 FORTRAN II CDC 1604
                              FORTRAN ACCESS TO SCIENTIFIC DATA FASD
138 FORTRAN II CDC 3100
                              LEAST SQUARES CURVE FITTING 2 3 & 4 DIMENSIONS
                CDC 3100
CDC 3100
118 FORTRAN
                              SECTION PLOTTING
 88 FORTRAN
                              MIXED LAYER CEPTH ANALYSIS MODEL MEDMLD
88 FORTRAN
                CDC 3100
                              ATMOSPHERIC WATER CONTENT MODEL
  3 FORTRAN II
                CDC 3100
                              OXYGEN SATURATION GXYGEN ANOMALY ISATBP
  .3 FORTRAN II
                CDC 3100
                              PLOT THETA-S CURVES
                CDC 3100
  3 FORTRAN II
                              PLUTS STATION POSITIONS
                CDC 3100
CDC 3100
 83 FORTRAN IV
                              SURF PREDICTION MODEL
 83 FORTRAN
                              SINGULAR WAVE PRECICTION MODEL
 2 FORTRAN II CDC 3100
                              SALINITY ANCMALY ISALBP
72 FORTRAN
                CDC 3100
                              DANISH ADVECTION, PROGRAM
                CDC 3100
112 FORTRAN
                              SOUNDING PLCT
75 FORTRAN CDC 3100
125 FORTRAN 32 CDC 3100
97 FORTRAN CDC 3100
                              OPTIMIZED MULTI-LAYER HN MODEL
                              TIME SERIES PLCTTING
                              SOUND SPEEC COMPUTATION MODEL SOVEL
112 FCRTRAN
                 CDC 3100
                              SODANC INVERSE
125 MS FORTRAN
                CDC 3150
                              TIME SERIES ANALYSIS PROGRAMS TSAP
                CDC 3150
47 FORTRAN IV
                              GEOPHYSICAL DATA STORAGE AND RETRIEVAL GEOFILE
                CDC 3150
CDC 3150
126 MS FORTRAN
                              TIME SERIES-ANALOG TO DIGITAL A TO D
 22 FORTRAN IV
                              ALKALINITY ALCT
                CDC 3150
79 FORTRAN
                              CURRENT METER DATA PROCESSING SYSTEM TIDE
 3 FORTRAN II
                CDC 3150
                              NUTRIENT CONCENTRATION PEAKS
 83 FORTRAN
                 CDC 3200
                              SINGULAR WAVE PREDICTION MODEL
                CDC 3200
CDC 3200
16 FORTRAN IV
                              SEA SURFACE TEMPERATURES ANALYSIS
 15 FORTRAN
                              INTERPOLATION FOR CCEANOGRAPHIC DATA
97 FORTRAN
                CDC 3200
                              SOUND SPEED COMPUTATION MODEL SOVEL
 11 FORTRAN IV
                 CDC 3300

    CXYGEN OPLCT

 11 FORTRAN IV
                 CDC 3300

    CHLCRCPHYLL CHLC

                CDC 3300
CDC 3300
 11 FORTRAN IV
                              SALINITY SALTY
 11 FORTRAN IV
                              TEMPERATURE SALINITY CLASS VOLUME TSVOL
 91 FORTRAN IV
                CDC 3300
                              ICEBERG DRIFT ICE-PLOT
                CDC 3300
                              THERMCMETER CCRRECTION THERZ
12 FORTRAN IV
12 FORTRAN IV
                CDC 3300
                              TRANSPORT XPCRT
                CDC 3300
142 FORTRAN
                              SOLVE ALGEBRAIC EQUATIONS MATRIX
                CDC 3300
CDC 3300
CDC 3300
116 FORTRAN
                              VERTICAL BAR GRAPHS
75 FORTRAN
                              CURRENT METER DATA CREATE-C
75 FORTRAN
                              CURRENT METER DATA CURRENT
 75 FORTRAN
                CDC 3300
                              CURRENT METER DATA CURRPLOT
                CDC 3300
 75 FORTRAN
                              CURRENT METER DATA SPECTRUM
                CDC 3300
CDC 3300
CDC 3300
39 FORTRAN IV
                              GECPHYSICAL CATA REDUCTION AND PLOTTING
 39 FORTRAN IV
                              PRECESSING/CISPLAY MARINE GEOPHYSICAL DATA
 39 FORTRAN IV
                              MARINE SEISMIC DATA REDUCTION AND ANALYSIS
                CDC 3300
39 FORTRAN IV
                              A LIBRARY OF GEOPHYSICAL SUBROUTINES GLIB
94 FORTRAN
                 CDC 3300
                              SOUND REFRACTION CLRRECTIONS FITIT
99 FORTRAN
                              ACCUSTIC PERFORMANCE AND EVALUATION
                 CDC 3300
121 FORTRAN
                CDC 3300
                              PHYSICAL DATA PLOT FRAME
                CDC 3300/0S3 TIME SERIES ARAND TAUTOPLT
131 FORTRAN
                CDC 3300/CS3 TIME SERIES ARAND TCOHPLT
131 FORTRAN
```

					•		
131	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	TCROPLT
131	FORTRAN	CDC	3300/053	TIME	SERIES	ARAND	TFORM1
131	FORTRAN	CDC	3300/053	TIME	SERIES		
131						ARAND	TFORM2
	FORTRAN	CDC	3300/053	TIME	SERIES	ARAND	TIMSPC
131	FORTRAN	CDC	3300/GS3	TIME	SERIES	ARAND	TLOGPLT
131	FORTRAN	CDC	3300/GS3	TIME	SERIES	ARAND	TNOIZT
131	FORTRAN	CDC		TIME	SERIES	ARAND	TPHAPLT
131	FORTRAN	CDC		TIME	SERIES	ARAND	TPLTFRQ
131	FORTRAN	CDÇ	3300/0S3	TIME	SERIES	ARAND	TPLTSPC
131	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	TRISMO
130	FORTRAN	CDC	3300/053		SERIES	ARAND	PCLRT
130	FORTRAN	CDC		TIME	SERIES	ARAND	POLYDV
130	FORTRAN	CDC		TIME	SERIES	ARAND	PROPLT
130	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	PSQRT
130		CDC					
	FORTRAN		3300/CS3	TIME	SERIES	ARAND	RANDM
130	FORTRAN	CDC	3300/GS3	TIME	SERIES	ARAND	RCTFFT
130	FORTRAN	CDC		TIME	SERIES	ARAND	RESPON
130	FORTRAN	CDC		TIME	SERIES	ARAND	REVERS
130	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	RPLACE
130	FORTRAN	CDC	3300/053	TIME	SERIES	ARAND	KRVERS
130	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	SARIT
130	FORTRAN	CDC	3300/0\$3	TIME	SERIES	ARAND	SERGEN
130	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	SHAPE
130	FORTRAN	CDC	3300/C\$3	TIME	SERIES	ARAND	SINTR
130	FORTRAN	CCC	3300/053	TIME	SERIES	ARAND	5 MO
130	FORTRAN	CDC		TIME	SERIES	ARAND	SPEC
130	FORTRAN	CDC		TIME	SERIES	ARAND	SPECT1
130	FORTRAN	CDC		TIME	SERIES	ARAND	SPECT2
129	FORTRAN	ÇDC	3300/CS3	TIME	SERIES	ARAND	FFIN
129	FORTRAN		3300/053	TIME	SERIES		
129						ARAND	FOLD
	FORTRAN	CDC		TIME	SERIES	ARAND	FCURTR
129	FORTRAN	CDC		TIME	SERIES	ARAND	FCUSPC
129	FORTRAN	CDC	3300/053	TIME	SERIES		FGUSPC1
129	FORTRAN	CDC	3300/G\$3	TIME	SERIES	ARAND	FOUSPC2
129	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	FRESPON
129	FORTRAN	CDC	3300/GS3	TIME	SERIES	ARAND	GAPH
129	FORTRAN	CDC	3300/0S3	TIME	SERIES	ARAND	GENER1
129	FORTRAN	CDC	3300/0S3	TIME	SERIES	ARAND	GENER2
129	FORTRAN	CDC	3300/0\$3	TIME	SERIES	ARAND	GENER3
129	FORTRAN	CDC	3300/GS3	TIME	SERIES	ARAND	LEGPLOT
129	FORTRAN	CDC	3300/0\$3	TIME	SERIES	ARAND	V0151
129	FORTRAN	CDC	3300/GS3	TIME	SERIES	ARAND	PHAPLT
129	FORTRAN	CDC	3300/0\$3	TIME	SERIES	ARAND	PLTFOR
129	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	PLTFRQ
129	FORTRAN	CDC	3300/053	TIME	SERIES	ARAND	PLTSPC
127	FORTRAN	CDC	3300/OS3	TIME	SERIES	ARAND	CCORR
127	FORTRAN	-	3300/GS3	TIME	SERIES		CONPLT
127	FORTRAN	CDC	3300/GS3	TIME	SERIES	ARAND	
	FORTRAN						COMPLET
		CDC	3300/053	TIME	SERIES	ARAND	CONFID
127	FORTRAN	CDC		TIME	SERIES	ARAND	CCNFID 1
127	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	CONMODE
127	FORTRAN		3300/GS3	TIME	SERIES	ARAND	CCPH
127	FORTRAN	CDC		TIME	SERIES	ARAND	COSTR
127	FORTRAN	CDC		TIME	SERIES	ARAND	LPEES
127	FORTRAN		3300/GS3	TIME	SERIES	ARAND	CPLT1
127	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	CPLT2
127	FORTRAN	CDC	3300/CS3	TIME	SERIËS	ARAND	CROPLT
127	FORTRAN	CDC	3300/C\$3		SERIES	ARAND	
127	FORTRAN	CDC	3300/OS3	TIME	SERIES	ARAND	

```
127 FORTRAN
                  CDC 3300/OS3 TIME SERIES ARAND CUSFO
                  CDC 3300/OS3 TIME SERIES ARAND CZT
128 FORTRAN
128 FORTRAN
                  CDC 3300/CS3 TIME SERIES ARAND DATPLT
                  CDC 3300/CS3 TIME SERIES ARAND LEMOD1
128 FORTRAN
128 FORTRAN
                  CDC 3300/CS3 TIME SERIES ARAND DEMOD2
                  CDC 3300/0S3 TIME SERIES ARAND DEMOD3 CDC 3300/CS3 TIME SERIES ARAND CETRNO
128 FORTRAN
128 FORTRAN
                  CDC 3300/OS3 TIME SERIES ARAND DIFF12
128 FORTRAN
                  CCC 3300/CS3 TIME SERIES ARAND EUREKA
128 FORTRAN
128 FORTRAN
                  CDC 3300/0S3 TIME SERIES ARAND EXSMO
128 FORTRAN
                  CDC 3300/0S3 TIME SERIES ARAND FFINI
                  CDC 3300/0S3 TIME SERIES ARAND FFTCNV CDC 3300/0S3 TIME SERIES ARAND FFTPS
128 FORTRAN
128 FORTRAN
128 FORTRAN
                  CDC 3300/CS3 TIME SERIES ARAND FFTS
128 FORTRAN
                  CDC 3300/OS3 TIME SERIES ARAND FFTSPC
128 FORTRAN
                  CDC 3300/OS3 TIME SERIES ARAND FILTER1
132 FORTRAN
                  CDC 3300/CS3 TIME SERIES ARAND TSGEN
                  CDC 3300/GS3 TIME SERIES ARAND TSPECT1
CDC 3300/GS3 TIME SERIES ARAND TSPECT2
132 FORTRAN
132 FORTRAN
                  CDC 3300/0S3 TIME SERIES ARAND TRANFR
132 FORTRAN
132 FORTRAN
                  CDC 3300/GS3 TIME SERIES ARAND TRANFRM
132 FORTRAN
                  CDC 3300/GS3 TIME SERIES ARAND ITYCON
                  CDC 3300/CS3 TIME SERIES ARAND TTYNUM CDC 3300/CS3 TIME SERIES ARAND UNLEAV
132 FORTRAN
132 FORTRAN
                  CDC 3300/CS3 TIME SERIES ARAND USES
132 FORTRAN
132 FORTRAN
                  CDC 3300/CS3 TIME SERIES ARAND USFO
132 FORTRAN
                  CDC 3300/0S3 TIME SERIES ARAND USID
132 FORTRAN
                  CDC 3300/CS3 TIME SERIES ARAND USPE
                  CDC 3300/0S3 TIME SERIES ARAND WINDOW CDC 3300/0S3 TIME SERIES ARAND ACFFT
132 FORTRAN
126 FORTRAN
126 FORTRAN
                  CDC 3300/OS3 TIME SERIES ARAND ACCRR
126 FORTRAN
                  CDC 3300/OS3 TIME SERIES ARAND ACRPLT
                  CDC 3300/GS3 TIME SERIES ARAND ALIGN
CDC 3300/GS3 TIME SERIES ARAND AMPACO
CDC 3300/GS3 TIME SERIES ARAND ARMAP
126 FORTRAN
126 FORTRAN
126 FORTRAN
                  CDC 3300/CS3 TIME SERIES ARAND AUTO
126 FORTRAN
126 FORTRAN
                  CDC 3300/0S3 TIME SERIES ARAND AUTOPLT
126 FORTRAN
                  CDC 3300/OS3 TIME SERIES ARAND AXISL
                  CDC 3300/CS3 TIME SERIES ARAND CCFFT CDC 3300/CS3 TIME SERIES ARAND WINDOW1
126 FORTRAN
133 FORTRAN
128 FORTRAN
                  CDC 3300/GS3 TIME SERIES ARAND FIVET
 51 FORTRAN
                  CDC 3600
                                 SPECIES AFFINITIES REGROUP
123 FORTRAN 63 CDC 3600
                                 VERTICALLY ANALYZED CONTOURS VACOTS
 13 FORTRAN
                  CDC 3600
                                 CONVERTS STD CATA RDEDTP
                                 CORRECTS STD DATA TPMOD PLCTTING PROGRAM PROFL
13 FORTRAN CDC 3600
116 FGRTRAN IV CDC 3600
116 FORTRAN
                  CDC 3600
                                 X-Y PLOTS MUDPAK
                              VERTICAL SECTION PLOTS ESTPAC
 12 FORTRAN 63
                  CDC 3600
                  CDC 3600

    47 FORTRAN

                                 PLGTS TRACK AND DATA PROFILE TRACK
 47 FORTRAN
                  CDC 3600
                                 GECDATA
 47 FORTRAN
                  CDC 3600
                                 MAGNETIC SIGNATURES MAGPLOT
                  CDC 3600
107 FORTRAN
                                 ANNCTATED TRACK ON STEREOGRAPHIC PROJECTION
101 FORTRAN 63
                  CDC 3800
                                - GRASS UNDERWATER ACQUISTICS PREDICTION RAPLCT
101 FORTRAN 63
                  CDC 3800
                                GRASS UNDERWATER ACCUSTICS PREDICTION LOSSPLOT
120 FORTRAN
                  CDC 3800
                                 LINE PRINTER PLCTS
100 FORTRAN 63
                  CDC 3800
                                 GRASS UNDERWATER ACOUSTICS PREDICTION CISTON
100 FORTRAN 63
                  CDC 3800
                                 GRASS UNDERWATER ACCUSTICS PREDICTION VFC
                  CCC 3800
                                 GRASS UNDERWATER ACCUSTICS PREDICTION CTOUR
100 FORTRAN .63
100 FORTRAN 63
                  CDC 3800
                                GRASS UNDERWATER ACCUSTICS PREDICTION PREPLT
```

```
100 FORTRAN 63 CDC 3800
                              GRASS UNDERWATER ACCUSTICS PREDICTION SERPENT
89 FORTRAN
                CDC 3800
                              MIE SCATTERING COMPUTATIONS
                CDC 3800
CDC 3800
CDC 3800
16 FORTRAN
                              INTERNAL GRAVITY WAVES DISPER
107 FORTRAN
                              ANNOTATED TRACK ON STEREOGRAPHIC PROJECTION
47 FORTRAN
                              PLOTS TRACK AND DATA PROFILE TRACK
                CDC 3800
 47 FORTRAN
                              GECDATA
                CDC 3800
47 FORTRAN
                              MAGNETIC SIGNATURES MAGPLOT
                              DATA MGT SYS FOR PHYS CHEM DATA OCEANSV
 4 FERTRAN
                CDC 6400
78 FCRTRAN .IV
                CDC 6400
                              VECTOR TIME SERIES CURPLT6
                CDC 6400
93 FORTRAN
                              HORIZCHTAL RANGE
                            UPWELLING CSTLUPWL
                CDC 6400
26 FCRTRAN
125 MS FORTRAN
                CDC 6400
                              TIME SERIES ANALYSIS PROGRAMS TSAP
                CDC 6400
                              SCALAR TIME SERIES TEMPLT7
125 FORTRAN IV
27 FORTRAN IV
                CDC 6400
                              THREE-DIMENSIONAL SIMULATION PACKAGE AUGUR
87 FORTRAN
                CDC 6400
                              PYRANOMETER AND RADIOMETER TIME SERIES RAD
52 FORTRAN IV
                CDC 6400
                             COMBINED CHLCRGPHYLL AND PRODUCTIVITY
24 FORTRAN IV
                CDC 6500
                             MULTI-LAYER HYDRODYNAMIC-NUMBERICAL MODEL
88 FORTRAN IV
                CDC 6500
                            HURRICANE HEAT POTENTIAL MODEL
24 FORTRAN IV
                CDC 6500
                            SINGLE LARGE HYCROCYNAMICAL-NUMERICAL MEDEL
 14 FCRTRAN EXT CDC 6500
                              CCEANCGRAPHIC DATA COMPUTATION TPCONV
83 FORTRAN IV
                CDC 6500
                             FRENCH SPECTRC-ANGULAR WAVE MODEL
93 FCRTRAN IV
                CDC 6500
                             NORMAL MODE CALCULATIONS NORMOD 3
76 FORTRAN
                CDC 6500
                              SEARCH AND RESCUE PLANNING ASAR
                CDC 6500
72 FORTRAN IV
                              THERMAL POLLUTION MODEL
75 FORTRAN
                CDC 6500
                              MEAN CRIFT ROUTINE
15 FORTRAN EXT CDC 6500
                              VARIANCE AND STANDARD DEVIATION SUMMARY
                CDC 6500
                              CBJECTIVE THERMCLINE ANALYSIS
17 FORTRAN IV
 88 FORTRAN IV
                             OCEAN-ATMOSPHERE FLEDBACK MCDEL
                CDC 6500
17 FORTRAN IV
                CDC 6500
                              WET BULB TEMPERATURE WETBLA
31 FORTRAN IV
                CDC 6600
                            DYNAMIC RESPONSE OF CABLE SYSTEM SNAPLG
                CDC 6600
CDC 6600
                              CHANGES IN ELECTROMECHANICAL CABLE RAMSC
31 FORTRAN IV
                             END RESPONSES IN ELECTROMECHANICAL CABLE RADAC
31 FORTRAN IV
51 FORTRAN IV
                CDC 6600
                             PRCDUCTIVITY CXYGEN
80 FORTRAN IV
                CDC 6600
                            HARMONIC ANALYSIS OF DATA AT TIDAL FREQUENCIES
30 FORTRAN IV
                CDC 6600
                            DEEP CCEAN LCAC HANCLING SYSTEMS DOLLS
30 FORTRAN IV
                CDC 6600
                              LOAD MOTION AND CABLE STRESSES CABL
                CDC 6600
30 FORTRAN IV
                              SOIL TEST DATA TRIAX
30 FORTRAN IV
                CDC 6600
                             DYNAMIC STRESS RESPONSE OF LIFTING LINES CABANA
148 FCRTRAN IV
                CDC 6600
                            REPRODUCE AND SERIALIZE DECK DUPE
                CDC 6600
57 FORTRAN
                            A GENERALIZEC EXPLCITED POPULATION SIMULATOR
                            X-Y PLOTS EBTPLT
DISPLAYS VHRR SATELLITE DATA V5DMD
HYDROGRAPHIC DATA REDUCTION TWO FIVE
123 FORTRAN IV
                CDC 6600
123 FORTRAN
                CDC 6600
146 FORTRAN 63
                CDC .6600
142 FORTRAN IV
                CDC 6600
                            CHECKS ANGLES TWOPI
82 FORTRAN IV
                CDC 6600
                            HURRICANE STORM SURGE FORECASTS SPLASH I
                          HURRICANE STORM SURGE FORECASTS SPLASH II
82 FORTRAN IV
                CDC 6600
    FORTRAN
                 CDC 6600
                              GENERALIZED STOCK PRODUCTION MODEL PRODFIT
 57
 38 FORTRAN IV
                CDC 6600
                              CONVECTION INVARIABLE VISCOSITY FLUID CONVEC
                             INTERNAL WAVE OSCILLATIONS ZMODE
17 FORTRAN
                CDC 6600
 2 FORTRAN IV
                CDC 6600
                             STD DATA PRECESSING
 52 FORTRAN IV
                CDC 6600
                            SPECIES DIVERSITY JCB
                CDC 6600
CDC 7600
                            PRODUCTIVITY ECOPRUD
MULTI-LAYER HYDRODYNAMICAL-NUMERICAL MODEL
FRENCH SPECTRC-ANGULAR WAVE MODEL
 52 FORTRAN IV
 24 FORTRAN IV
                CDC 7600
83 FORTRAN IV
                CUC 7600
75 FORTRAN
                             CPTIMIZED MULTI-LAYER HN MODEL
17 FORTRAN
                CDC 7600
                              INTERNAL WAVE OSCILLATIONS ZMODE
117 FORTRAN
                CDC CYBER
                              X-Y PLOTS IN A FLEXIBLE FORMAT MEDSPLCT
  4 FORTRAN IV
                CDC CYBER 74 DAILY SEAWATER CBSERVATIONS
```

DIGITAL EQUIPMENT CORPORATION

```
125 FORTRAN 32 PDP-8
                             TIME SERIES PLOTTING
 3 FORTRAN II
                PDP-8
                             PLOTS STATICN POSITIONS
  3 FORTRAN II
                PDP-8
                             PLOT THETA-S CURVES
118 FORTRAN
                PDP-8
                             SECTION PLOTTING
                PDP 8E
  5 FCRTRAN II
                             MASS TRANSPORT AND VELOCITIES GEOMASS
                             BARTLETT'S CURVE FITTING
139 FORTRAN
                P DP-9
 5 FORTRAN IV
                PDP 10
                             STATION DATA THIRP
               PDP 10
                             THERMCMETER CORRECTION THERMOMETRIC DEPTH
 5 FORTRAN IV
 20 FORTRAN
                PDP-11
                             GENERAL PURPOSE EDITOR DMSEC
 20 FORTRAN
                PDP-11
                             TIME SERIES INTO PROFILES DMSCHP
20 FORTRAN
                PDP-11
                             AANDERAA CURRENT METER DATA AACAL
 20 FORTRAN
                PDP-11
                             CURRENT PROFILER DATA MK2CAL
 20 FORTRAN
                PDP-11
                             APPENDS NEW DATA TO FILE DERIVE
```

GENERAL ELECTRIC

139 FORTRAN II GE 225 CURVE FITTING CRYFT

HELLETT-PACKARC

				·
143	FORTRAN	HP	2100 .	THERMCMETER CORRECTION DEPTH COMP HYD1
8	FORTRAN IN	/ HP	2100	STATION DATA HYD2
3	FORTRAN IN	/ HP	2100A	STD TABLES AND PLCTS STD
16	FORTRAN IN	/ HP	2100S	THERMCMETER CATA FILE HANDLER THERMO
105	FORTRAN IN	/ HP	21008	LORAN OR CMEGA CONVERSION GEPOS
107	FCRTRAN IN	/ HP	2100S	ANNOTES CHART
108	FORTRAN IN	/ HP	21005	BATHYMETRIC OR MAGNETICS CHART PROFL
108	FORTRAN IN	/ HP	2100S	MERCATOR CHART DIGITIZATION ANTRK
108	FORTRAN IN	V HP	2100S	BATHYMETRIC CHART LIGITIZATION DGBTH
108	FORTRAN IN	/ HP	21005	PLCTS ON STERECGRAPHIC CHART ANNOT
108	FORTRAN IN	V HP	21008	PLCTS NAVIGATION DATA CCEAN
16	FORTRAN IN	/ HP	2100S	THERMCMETRIC CEPTH CALCULATION CAST
124	ASSEMBLY	HP	2100S	PLOTTER CCMMANDS PLCT DVRIC
109	FORTRAN IN	/ HP	2100S	LONG BASE LINE ACCUSTIC TRACKING
				STD PROCESSING WET
1	FORTRAN	HP	2115A ·	DIGITIZES STC DATA CEEP
105	FORTRAN I	V HP	3100A	CRUISE TRACK TMERC
32	BASIC	HP	9830A	UNMANNEC FREE-SWIMMING SUBMERSIBLE
				UNMANNED FREE-SWIMMING SUBMERSIBLE HOTEL LOAD.
31	BASIC	HP	9830A	UNMANNEC FREE-SWIMMING SUBMERSIBLE PLOT
120	FORTRAN I	V H₽	MINI	PLOTS NAVIGATION WITH ANY OTHER DATA TYPE DEEP6

IBM

51	FORTRAN IV	IBM	360	TOXICITY BICASSAY PROBIT ANALYSIS
54	FORTRAN IV	IBM	360	SUCCESSION
54	FORTRAN IV	IBM	360	SPECIES ABUNCANCE
134	FORTRAN IV	IBM	360	TIME SERIES ANALYSIS BLACKY
24	FORTRAN IV	IBM	360	SINGLE LARGE HYDRODYNAMICAL-NUMERICAL MODEL
143	FCRTRAN IV	IBM	360	AREAL CONCENTRATION INTEGRATE
143	FORTRAN IV	18M	360	UNWEIGHTED AVERAGES AVERAGE
73	ANS FORTRAN	I BM	360	ECOLOGICAL STATISTICAL PROGRAMS ECCSTAT
2 <i>E</i>	FORTRAN IV	IBM	360	MATHEMATICAL WATER QUALITY MODEL FOR ESTUARIES

```
26 FORTRAN IV
                         IBM 360
                                              COMPUTATION OF FLOW THROUGH MASONBORO INLET NO
                         IBM 360
 26 FORTRAN IV
                                              CIRCULATION IN PAMLICC SOUND
116 FORTRAN
                         IBM 360
                                              DENDRCGRAPH
 25 FORTRAN IV
                         IBM 360
                                              DYNAMIC DETERMINISTIC SIMULATION SIMUDELT
 54 FORTRAN IV
                         IBM 360
                                             PIGMENT RATIC
                                          ENVIRCHMENTAL DYNAM
GECSTROPHIC CURRENT
 13 BASIC
                         IBM 360
                                             ENVIRONMENTAL DYNAMICS SUBROUTINES OCEANLIB
 13 BASIC
                         IBM 360
                                           CO2 AND DC SAT
 22 FORTRAN
                         IBM 360
                                      SPECIFIC CONDUCTIVITY WITH PRESSURE EFFECT
 22 FORTRAN
                         IBM 360
                        IBM 360 CBJECTIVE THERMOCLINE ANALYSIS
IBM 360/30 ADJUSTS A STATE PLANE COORDINATE TRAVERSE
IBM 360/40 MATHEMATICAL MODEL OF COASTAL UPWELLING
 17 FORTRAN IV
112 FORTRAN IV
 28 FORTRAN IV
 86 FORTRAN
                         IBM 360/40 WATER WAVE TEACHING AIDS PROFILE
                         IBM 360/40 WATER WAVE TEACHING ALDS FROFILL
IBM 360/40 WATER WAVE TEACHING ALDS REFL1
IBM 360/40 WATER WAVE TEACHING ALDS FORCE AND MOVEMENT
IBM 360/40 WATER WAVE TEACHING ALDS PROFIL
IBM 360/40 WATER WAVE TEACHING ALDS PROFIL
IBM 360/40 WATER WAVE TEACHING ALDS UTWAYI
 86 FORTRAN
 86 FORTRAN
135 FORTRAN IV
 85 FORTRAN
 85 FORTRAN
                        IBM 360/40 WATER WAVE TEACHING AIDS UTMAXI
IBM 360/40 WATER WAVE TEACHING AIDS UTMAXI
IBM 360/40 WATER WAVE TEACHING AIDS WMAX1
IBM 360/40 WATER WAVE TEACHING AIDS DETRND
IBM 360/40 WATER WAVE TEACHING AIDS WTMAX2
 85 FORTRAN
 85 FORTRAN
 85 FORTRAN
 85 FORTRAN
 85 FORTRAN
                        IBM 360/40 WATER WAVE TEACHING AIDS WITH AND WATER WAVE TEACHING AIDS WITH IBM 360/40 WATER WAVE TEACHING AIDS WITH IBM 360/40 WATER WAVE TEACHING AIDS WITH IBM 360/40 WATER WAVE TEACHING AIDS AUTCOV
 85 FORTRAN
 85 FORTRAN
 85 FORTRAN
 85 FORTRAN
 85 FORTRAN
                         IBM 360/40 WATER WAVE TEACHING AIDS CRSCOV
 85 FORTRAN
                         IBM 360/40 WATER WAVE TEACHING AIDS FOURTR
 85 FORTRAN
                        IBM 360/40 WATER WAVE TEACHING AIDS EDSIT
IBM 360/40 MAP PROJECTIONS AND GRIDS MAP
IBM 360/50 CONSISTENCY OF PHYSICAL AND CHEMICAL DATA
IBM 360/50 CONSISTENCY OF PHYSICAL AND CHEMICAL DATA
 85 FORTRAN
115 FORTRAN IV
   4 COBOL
   4 FORTRAN
                         IBM 360/61 PROFILE PLCTS TIME AXIS PROFL3
122 FORTRAN IV
122 FORTRAN IV
                         IBM 360/61 PROFILE PLCTS DISTANCE AXIS PFLDST
                         IBM 360/61 MAP PLCTS MAFPLT
IBM 360/65 PLCTS PROFILES OF BATHYMETRY AND MAGNETIC
IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASCIPES
IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASSAMPC
IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASEINV
122 FORTRAN IV
 41 FORTRAN IV
150 FORTRAN IV
150 FORTRAN IV
150 FORTRAN IV
                         IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASCOI
IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASVPRT
IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GVAREFRM
IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS CANADA
150 FORTRAN IV
150 FORTRAN IV
150 FORTRAN IV
150 FORTRAN IV
                         IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GAS
150 FERTRAN IV
                         IBM 360/65 FILE INCEPENCENT GEN APP SYS GAS GASVASUM
150 FORTRAN IV
                         IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GAS THERM IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASTHERM IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS INDATA
150 PL/1
150 ASSEMBLER
150 ASSEMBLER
150 ASSEMBLER IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS CREATE
150 ASSEMBLER
                      IBM 360/65 FILE INCEPENCENT GEN APP SYS GAS MONTH&C
                        IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS CHEM80
IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS DEPTH8C
IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS LATLON80
150 ASSEMBLER
150 ASSEMBLER
150 ASSEMBLER
                         IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS GASCADER
150 ASSEMBLER
                         IBM 360/65 TEMFERATURE DIFFERENCE CALCULATIONS
 20 ASSEMBLER
120 FORTRAN
                         IBM 360/65
                                              SEQUENTIAL PLCTTING
144 FORTRAN IV
                         IBM 360/65
                                             JULIAN DATE CONVERSION ROUTINES JULIAN
```

```
144 FORTRAN IV IBM 360/65
  144 FORTRAN IV IBM 360/65
                                                                                                                                    JULIAN DATE CONVERSION ROUTINES JULYAN
                                                                                                                                    JULIAN DATE CONVERSION ROUTINES JULSEC
  144 FORTRAN IV IBM 360/65 JULIAN DATE CONVERSION ROUTINES CESLUJ
                                                                    IBM 360/65 DAY OF THE WEEK NDAYWK
IBM 360/65 DXYGEN PHCSPHATE DENSITY PLCTS
IBM 360/65 GENERAL MERCATOR PLOT
IBM 360/65 NOS SCIENTIFIC SUBROUTINE SYSTEM LORAN
IBM 360/65 NOS SCIENTIFIC SUBROUTINE SYSTEM GMEGA
  144 FORTRAN IV
  124 FORTRAN IV
  124 FORTRAN IV
  114 FORTRAN IV
  114 FORTRAN IV
114 FORTRAN IV IBM 360/65 NCS SCIENTIFIC SUBROUTINE SYSTEM SOCIN
114 FORTRAN IV IBM 360/65 NOS SCIENTIFIC SUBROUTINE SYSTEM SODPN
114 FORTRAN IV IBM 360/65 NOS SCIENTIFIC SUBROUTINE SYSTEM TPFIX
114 FORTRAN IV IBM 360/65 NOS SCIENTIFIC SUBROUTINE SYSTEM TPFIX
114 FORTRAN IV IBM 360/65 FITS A SMCCTH CURVE
18 FORTRAN IBM 360/65 POTENTIAL TEMP AND/OR DENSITY POTDEN
18 FORTRAN IV IBM 360/65 DYNAMIC DEPTH ANOMALY DYANEM
18 FORTRAN IV IBM 360/65 SALINITY FROM CONDUCTIVITY T P SALINE
18 FORTRAN IV IBM 360/65 SURFACE CURRENT SUMMARY SUFCUR
148 FORTRAN IV IBM 360/65 GRAVITATIONAL ATTRACTION TWO-DIMENSIGNAL BCDIES
153 ASSEMBLER IBM 360/65 RETXET
153 ASSEMBLER IBM 360/65 RETXET
153 ASSEMBLER IBM 360/65 BTLISTC
153 FORTRAN IV IBM 360/65 SUSSELECT
                                                                        IBM 360/65 NCS SCIENTIFIC SUBROUTINE SYSTEM SODIN
  114 FORTRAN IV
  153 FORTRAN IV IBM 360/65 XBSELECT
 153 FORTRAN IV 18M 360/65 XBMSINV
153 FORTRAN IV 18M 360/65 XBGEOSUM
153 FORTRAN IV 18M 360/65 CANWMC
153 PL/1 18M 360/65 BTGECIV
                                                                  . IBM 360/65 SCHNINE
  153 PL/1
153 PL/1
158 PL/1
159 PL/1
150 PL/1
150 PL/1
150 PL/1
150 PL/1
150 PL/1
151 PORTRAN IV IBM 360/65
150 PRYLAND
150 PORTRAN IV IBM 360/65
151 PORTRAN IV IBM 360/65
152 PORTRAN IV IBM 360/65
153 PORTRAN IV IBM 360/65
154 PORTRAN IV IBM 360/65
155 PORTRAN IV IBM 360/65
156 PORTRAN IV IBM 360/65
157 PORTRAN IV IBM 360/65
158 PORTRAN IV IBM 360/65
159 PORTRAN IV IBM 360/65
150 PORTRAN IV IBM 360/65
160 PORTRAN IV IBM 360/65
170 PORTRAN IV IBM 360/65
180 PORTRAN IV IBM 360/65
190 PO
  153 PL/1
                                                 IBM 360/65 SCMULTI
                                                                      IBM 360/65 PLOTS MAPS GRIDS TRACKS MAP
  103 FORTRAN IV
  152 ASSEMBLER
                                                                       IBM 360/65 SDPRT2
 152 ASSEMBLER IBM 360/65 SDSELECT
152 ASSEMBLER IBM 360/65 SD2MSTCT
152 ASSEMBLER IBM 360/65 SD2SAMP
152 ASSEMBLER IBM 360/65 MAKE120
  152 ASSEMBLER IBM 360/65 DEPTH
```

```
152 ASSEMBLER
                IBM 360/65
                              CRUCON
152 ASSEMBLER
                IBM 360/65
                              CODCCCNV
152 ASSEMBLER
                 IBM 360/65
                              SUPERSEL
                IBM 360/65
152 ASSEMBLER
                              SDPASS
152 ASSEMBLER
                IBM 360/65
                              XORDER
152 ASSEMBLER
                IBM 360/65
                              XBTCCUNT
152 FORTRAN
                IBM 360/65
                              XBTQKCUT
152 PL/1
                IBM 360/65
                              SDGECIV
152 PL/1
                IBM 360/65
                              XBEVALU
152 PL/1
                IBM 360/65
                              XBCCNV
152 PL/1
                IBM 360/65
                              XBFNWC
152 PL/1
                IBM 360/65
                              XBTNWSUM
122 FORTRAN IV IBM 360/65
22 FORTRAN IV IBM 360/65
                              CHECKS ANGLES TWOPI
                              PLCTS SCATTERGRAM SCTGM4 SCTGMS
                IBM 360/65
 22 FORTRA'N IV
                              PERCENTAGE SATURATION OF OXYGEN IN ESTUARY
25 FORTRAN IV
                IBM 360/65
                              MIT SALINITY INTRUSION PROGRAM
115 FORTRAN IV
                IBM 360/65
                              COMPUTE GREAT CIRCLE PATH GCIRC
144 FORTRAN IV
                IBM 360/65
                              JULIAN DAY CONVERSION JDAYWK
144 FORTRAN IV
                 IBM 360/65
                              JULIAN CATE CONVERSION ROUTINES JULDAY
  7 FORTRAN IV
                IBM 360/65
                              READ CALC INTERP STATION DATA CAPRICORN
  7 FORTRAN IV
                IBM 360/65
                              STATION DATA CALCULATIONS F3
147 FORTRAN IV
                IBM 360/65
                              READS NCDC STATION DATA TAPE
  8 FORTRAN IV
                IBM 36C/65
                              PLCTS STATICA DATA PLTEDT
  8 FORTRAN IV
                IBM 360/65
                              CALCULATES STATION DATA SECPG
 97 FORTRAN
                 IBM 360/65
                              SOUND VELCCITY WILSONS FORMULA WESND
97 FORTRAN
                IBM 360/65
                              SOUND VELCCITY WILSONS FORMULA SVELFS
                              SOUND VELCCITY WILSONS FORMULA VELPRS
97 FCRTRAN
               IBM 360/65
141 PL/1
                IBM 360/65
                              LINEAR INTERPOLATION LININT
                              LAGRANGIAN THREE PGINT INTERPOLATION LAG3PT CALCULATES SPLINE COEFFICIENT SPLCOF
141 PL/1
                IBM 360/65
141 FORTRAN IV IBM 360/65
141 FORTRAN IV IBM 360/65
                            INTERPOLATING BY CUBIC SPLINE
151 FORTRAN IV
                IBM 360/65
                            FILE INCEPENCENT GEN APP SYS GAS ALTERGAS
151 FORTRAN IV .IBM 360/65
                            FILE INCEPENCENT GEN APP SYS GAS GASB
151 FORTRAN IV
                IBM 360/65
                              FILE INDEPENDENT GEN APP SYS GAS NODCSQ
                              FILE INDEPENDENT GEN APP SYS GAS NAMES FILE INDEPENDENT GEN APP SYS GAS SD2 GAS
151 FORTRAN IV
                IBM 360/65
151 FORTRAN IV
                IBM 360/65
151 ASSEMBLER
                IBM 360/65
                              SDRETV
151 ASSEMBLER
                 IBM 360/65
                              SD2TCSD1
151 PL/1
                 IBM 360/65
                              SD2CHAR
 41 FORTRAN IV
                IBM 360/65
                              MARINE GECPHYSICAL DATA REDUCTION
83 FORTRAN IV IBM 360/75
                              WAVE BOTTOM VELOCITY
                IBM 360/85 DATA MGT SYS FOR PHYS CHEM DATA GCEANSV
 4 COBOL
                IBM 360/85
                              DATA MGT SYS FOR Phys CHEM DATA OCEANSV
  4 PL/1
 84 FORTRAN
                IBM 360/165 WAVE INTERACTION WITH CURRENT CAPGRAY
 74 PL/1
                IBM 360/168 DRIFT BOTTLE/STATISTICS
                              DRIFT BOTTLE PLCTS
REFORMAT AND SORT DRIFT BOTTLE DATA
 74 PL/1
                 IBM 360/168
74 PL/1
                IBM 360/168
80 FORTRAN IV IBM 360/195
                              ASTRONOMICAL TIDE PREDICTION
                              TIDES IN THE CPEN SEA
80 FORTRAN 6C IBM 360/195
                IBM 360/195
123 FORTRAN
                              MICROFILM PLCTS OF VHRR SATELLITE DATA
 82 FCRTRAN IV
                IBM 360/195
                              EAST COAST STORM SURGE
82 FORTRAN IV
                IBM 360/195
                              WAVE FORECASTS
28 FORTRAN IV
                IBM 370
                              ESTUARINE CHEMISTRY MYACHEM
28 FORTRAN IV
                IBM 370
                              ESTUARINE TICES
73 ANS FORTRAN IBM 370
                              ECOLOGICAL STATISTICAL PROGRAMS ECCSTAT
116 FORTRAN
                 IBM 370
                              DENCREGRAPH
136 FORTRAN IV
                 IBM 370
                              PRCBABILITY CISTRIBUTION WEIBUL
56 FORTRAN IV
                              RESOURCES ALLCCATION IN FISHERIES MGT PISCES
                IBM 370
 56 FORTRAN IV
                IBM 370
                              WATER RESCURCES TEACHING GAME DAM
```

```
55 FORTRAN
                IBM 370
                              CHLOROPHYLL CHLOR
 55 FORTRAN
                IBM 370
                              PHYTOPLANKTON POPULATION DENSITY
 55 FORTRAN
                IBM 370
                              SPECIES DIVERSITY
153 FORTRAN
                IBM 370
                              REFORMATTED STATION OUTPUT IBM 1
50 FORTRAN
                IBM 370
                              OPTIMAL ECGSYSTEM POLICIES DEP
                IBM 370/155 MODELING AN CCEAN POND
28 FORTRAN
                IBM 370/155 ESTUARINE DENSITY CURRENTS AND SALINITY
25 FORTRAN
24 FORTRAN
                IBM 370/165
                             ESTUARINE MCCEL NCALNRA
 72 PL/1
                IBM 370/168 MONTE CARLC SPILL TRACKER
 87 PL/1
                IBM 370/180 MARKEVIAN ANALYSIS OF TDF-14 WIND DATA
117 FORTRAN IV
                IBM 1130
                              PLGTS HYDRC CAST CATA PLOG
                              PLOTS STD DATA STPC1
117 FORTRAN IV
                IBM 1130
145 FORTRAN II
                IBM 1130
                              REDUCTION AND DISPLAY OF DATA ACQUIRED AT SEA
135 FORTRAN IV
                IBM 1130
                              ANALYSIS OF NON-LINEAR RESPONSE SURFACE
135 FORTRAN IV
                IBM 1130
                              MULTIPLE CISCRIMINANT ANALYSIS MULDA
146 FORTRAN VI
                IBM 1130
                              THERMCMETER CORRECTION TOHK2
25 FORTRAN IV
                IBM 1130
                              BEACH SIMULATION MCDEL
29 FORTRAN IV
                IBM 1130
                              BEACH AND NEARSHORE MAPS A-S
118 FORTRAN IV
                IBM 1130
                              PLCTS TEMPERATURE-SALINITY PSAL 1
38 FORTRAN IV
                IBM 1130
                              SEDIMENT GRAIN SIZE ANALYSIS
54 FORTRAN IV
40 FORTRAN IV
                IBM 1130
                              YIELD PER RECRUIT RYLD BIOM
                IBM 1130
                              REDUCTION DISPLAY STORAGE GEOPHYSICAL DATA
  1 FCRTRAN IV
                              STD CCMPUTATIONS STP02
                IBM 1130
  1 FORTRAN IV
                IBM 1130
                              HYDRO CAST COMPUTATIONS
  1 FORTRAN IV
                IBM 1130
                              TRANSPORT COMPUTATIONS FROM ATMOSPHERIC PRESSURE
103 FORTRAN IV
                IBM 1130
                              SATELLITE RISE AND SET TIMES ALERT ASORT
134 FORTRAN
                IBM 1401
                              TWC-DIMENSICNAL AUTOCORRELATION
                IBM 1604
 91 FORTRAN 60
                              WIND DRIFT AND CONCENTRATION OF SEA ICE ICEGRID
 1 FORTRAN I
                IBM 1620
                              TRANSPORT COMPUTATIONS FROM ATMOSPHERIC PRESSURE
15 FORTRAN
                IBM 1620
                              INTERPOLATION FOR CCEANOGRAPHIC DATA
                IBM 1620
                              COMPUTES GECGRAPHIC POSITIONS
114 SPS
114 SPS
                IBM 1620
                              LORAN C VERSICN2
79 FORTRAN II
                              PRCCESSES CURRENT INSTRUMENT OBSERVATIONS SOIL AND SECIMENT ENGINEERING TEST DATA
               IBM 1620
48 FORTRAN II IBM 1620
                              FORMAT FREE INPUT SUBROUTINE QREAD
149 FORTRAN
                IBM 1800
149 FORTRAN
                IBM 1800
                              METERS VS FATHOMS MATBL
134 FORTRAN IV
                IBM 1800
                              GENERATES AREITRARY FILTER HILOW
 84 FORTRAN IV
                .IBM 1800
                              SHIPBORNE WAVE RECORDER ANALYSIS SBWRO
104 FERTRAN IV
                IBM 1800
                              LCRAN/DECCA COORDINATES CALCULATION HNAV
                IBM 1800
104 FORTRAN IV
                              LORAN/DECCA FILE INITIALIZATION HNV1
104 FORTRAN IV
                IBM 1800
                              GECDETIC DISTANCE AND AZIMUTH SDANG
37 FORTRAN IV
                IBM 1800
                              CABLE CENFIGURATION
                IBM 1800
IBM 1800
                              DATE CALCULATIONS DAYWK DATE CALCULATIONS AWDAT
144 FORTRAN
144 FORTRAN
                              DATE CALCULATIONS NATDY
144 FORTRAN
                IBM 1800
144 FORTRAN
                IBM 1800
                              DATE CALCULATIONS YSTDY
103 FORTRAN
                IBM 1800
                              SATELLITE NAVIGATION
                              BARTLETT'S CURVE FITTING
139 FORTRAN
                IBM 1800
136 FORTRAN
                IBM 1800
                              CLUSTER ANALYSIS
106 FORTRAN
                IBM 1800
                              LORAN FIX LRFIX
106 FPRTRAN
                IBM 1800
                              PLAN COURSE AND SCHEDULE CRUIS
106 FORTRAN
                IBM 1800
                              EARTH SPHERICAL SUBROUTINES ESTCH ESTC2 ESTPL
105 FORTRAN
                IBM 1800
                              PLOTS MERCATOR GRID CHART
105 FORTRAN
                IBM 1800
                              NAVIGATIONAL SATELLITE PASSES ALRTX
                IBM 1800
145 FORTRAN
                              JULIAN DAY SUBROUTINES CLEJL
                              JULIAN DAY SUBROUTINES CLJUL
145 FORTRAN
                IBM 1800
145 FORTRAN
                IBM 1800
                              TIME CONVERSION DTIME
145 FORTRAN IV
                IBM 1800
                              CURRENT METER DATA REDUCTION
142 FORTRAN
                IBM 1800
                              TRIGONOMETRY SUBROUTINES ASSUB SAS ASA
```

```
107 FORTRAN
                IBM 1800
                              DEGREE CONVERSIONS DEGFR DEMI
107 FORTRAN
                IBM 1800
                              MERCATOR DEGREES DMRCT
107 FORTRAN
                IBM 1800
                              MAGNETIC FIELD COMPONENTS MAGFI
98 FORTRAN
                IBM 7074
                              LIGHT AND SCUNC INSTRUCTION B
                IBM 7074
112 FORTRAN
                              SOUNDING PLCT
                              SINGLE INTEGRATION SINGLE INTEGRATION
112 FORTRAN
                IBM 7074
                IBM 7074
137 FORTRAN
 45 FORTRAN
                IBM 7074
                              LIGHT AND SOUND INSTRUCTION D
 46 FORTRAN
                IBM 7074
                              SEAMOUNT MAGNETIZATION
 46 FORTRAN
                IBM 7074
                              GBSERVATION CRAPING GRAVITY
 76 FORTRAN
                IBM 7074
                              CURRENT METER TURBLLENCE
                              LEAST SQUARES PLOT
139 FORTRAN
                IBM 7074
 89 FORTRAN
                              SOLAR RADIATION CONVERSION
                IBM 7074
 89 FORTRAN
                IBM 7074
                              WIND STRESS
                 IBM 7074
 89 FORTRAN
                              TWE-DIMENSIONAL POWER SPECTRUM FOR SWOP II
144 FORTRAN
                IBM 7074
                              BATHYMETRIC DATA REDUCTION
                IBM 7074 -
14 FORTRAN
                              MENTHLY SCALE LAYER DEPTH
14 FORTRAN
                IBM 7074
                              VERTICAL TEMPERATURE GRADIENTS
                IBM 7074
40 FORTRAN IV
                              COMPUTATION AND PLOTTING OF MAGNETIC ANCHALIES
100 FORTRAN
                IBM 7074
                              CRITICAL ACCUSTIC RATIC
110 FORTRAN II
                IB7 7074
                              INDIVIDUAL PCINT GENERATOR FOR MAP PROJECTIONS
                IBM 7074
                              PRECICTION OF VERTICAL TEMPERATURE CHANGE
 90 FORTRAN
 90 FORTRAN
                 IBM 7074
                              CLCUD COVER AND DAILY SEA TEMPERATURE
                187 7074
111 FORTRAN II
                              INDIVIDUAL PCINT GENERATOR FOR DISTANCE
                IB7 7074
111 FORTRAN
                              GEODETIC CATUM REDUCTION
                 IB7 7074
111 FORTRAN
                              GEODETIC PESITION COMPUTATION AND PLOT
146 FORTRAN II
                IBM 7094
                              STATION DATA REDUCTION SYNOP
                IBM 7094
IBM 7090
 52 FORTRAN IV
                              CONCENTRATIONS PER SQUARE METER OF SURFACE
135 FORTRAN
                              FOURIER ANALYSIS L101
134 FCRTRAN
                IBM 7090
                              TWO-DIMENSICNAL AUTCCCRRELATION
104 MAD
                IBM 7090
                              GENERAL MAP PROJECTION
104 MAD
                IBM 7090
                              FINITE MAP PROJECTION DISTORTIONS
                IBM 7090
 80 MAD
                              THEORETICAL RADIAL TIDAL FORCE
                              SEA ICE STUDIES YARIT
 91 FORTRAN IV
                IBM 7090-94
                IBM 7090-94
                              SEA ICE STUDIES FLIP
91 FORTRAN IV
                IBM 7090-94
 91 FORTRAN IV
                              SEA ICE STUDIES SALPR
 91 FORTRAN IV
                IBM 7090-94
                              SEA ICE STUDIES RITE
146 FORTRAN 11
                              STATICN DATA REDUCTION SYNOP
                IBM 7094
 53 FORTRAN IV
                IBM 7094
                              PHYTCPLANKTCH NUMBERS VOLUME SURFACE AREA
 53 MAP
                 IBM 7094
                              PHYTOPLANKTON NUMBERS VOLUME SURFACE AREA
101 FORTRAN II
                IBM 7090
                              ACCUSTIC RAY TRACING
```

UNIVAC

					•
138	FORTRAIN	٧	UNIVAC		FITTING A LEAST SQUARES DISTANCE HYPERPLANE
20	FORTRAN		UNIVAC	1106	APPENDS NEW DATA TO FILE DERIVE
20	FORTRAN		UNIVAC	1106	CONCATENATES SORTS SEGMENTS OUTPUTS DMSCRT
20	FORTRAN		UNIVAC	1106	INTERPOLATES TO UNIFORM GRID MATRIX 01
20	FORTRAN		UNIVAC	1106	TIME SERIES STO OR PCM PROFILES PLSAD
20	FORTRAN		UNIVAC	1106	INTERNAL WAVES IWEG
20	FORTRAN		UNIVAC	1106	DYNAMICAL FIELDS INTERNAL WAVE RAYS CHRSEC
20	FORTRAN		UNIVAC	1106	AUTO AND CROSS SPECTRA TUKEY METHOD
20	FORTRAN		UNIVAC	1106	AUTO AND CRCSS SPECTRA POLARIZED FORM CMXSPC
20	FORTRAN		UNIVAC	1106	AMPLITUDES PHASES LEAST SQUARES TIDES4
20	FORTRAN		UNIVAC	1106	METEOROLOGICAL FLUXES METFLX
20	FOR TRAN		UNIVAC	1106	CRCSS CCVARIANCE MATRIX EMPEIGI
101	FORTRAN	I۷	UNIVAC	1108	SONAR IN REFRACTIVE WATER
101	FORTRAN	I۷	UNIVAC	1108	SCNAR IN REFRACTIVE WATER

```
101 FORTRAN IV UNIVAC 1108 SORTS SOUND RAY DATA RAY SORT
141 FORTRAN IV
                    UNIVAC 1108 SMOOTHING DATA USING THE CUBIC SPLINE
121 FORTRAN
                    UNIVAC 1108 OVERLAY PLCTTING GVLPLT
121 FORTRAN V
                    UNIVAC 1108 REFORMATS DATA PLOTS TRACK CHART MASTRACK
                    UNIVAC 1108 LORAN TO GECGRAPHIC AND/GECGIUNIVAC 1108 LORAN COORCINATE COMPUTATION
110 FORTRAN
                                    LORAN TO GEOGRAPHIC AND/GEOGRAPHIC TO LORAN
110 FORTRAN
110 FORTRAN
                    UNIVAC 1108 LORAN SKYMAVE CORRECTION
 50 FORTRAN IV
                    UNIVAC 1108 INVERSE PROBLEM IN ECGSYSTEM ANALYSIS
 44 FORTRAN IV
                    UNIVAC 1108 LISTS GEOPHYSICAL DATA LISTP
                   UNIVAC 1108 COURSE, SPEED, ECTVCS CORRECTION LOXNAV
UNIVAC 1108 CONVERTS GEOPHYSICAL DATA PHONEY
UNIVAC 1108 SOUND VELECITY VARIATION AND NAVIGATION FATHOM
 44 FORTRAN IV
 44 FORTRAN .IV
 44 FORTRAN IV
 99 FORTRAN V
                    UNIVAC 1108 CONTINUOUS GRADIENT RAY TRACING SYSTEM CONGRATS
                    UNIVAC 1108 - RAY PATH SC434B
 99 FORTRAN
                    UNIVAC 1108 TEMPERATURE SALINITY CORRECTIONS CURVEFIT N1S512
139 FORTRAN
                   UNIVAC 1108 FAA PLCT
UNIVAC 1108 DISTANCE AND AZIMUTH CIRAZD
109 FCRTRAN
109 FORTRAN
                    UNIVAC 1108 PARAMETRIC MAP
109 FORTRAN
 94 FORTRAN V
                    UNIVAC 1108
                                    BEAM PATTERNS AND WIDTHS GBEAM
 94 FORTRAN V
                    UNIVAC 1108 STATISTICS ACOUSTIC MEASUREMENTS AND PREDICTIONS
                   UNIVAC 1108 PROPAGATION LCSS FAST FIELD PROGRAM
UNIVAC 1108 BOTTOM REFLECTIVITY
UNIVAC 1108 BOOMERANG CORER DESCENT/ASCENT TRAJECTORIES
UNIVAC 1108 BUCY-SHIP DYNAMICS
 94 FORTRAN IV
 94 FORTRAN II
 34 FORTRAN V
 34 FORTRAN V
                    UNIVAC 1108 BUOY-SYSTEM DYNAMICS
UNIVAC 1108 FIXED THIN LINE ARRAY DYNAMICS
 34 FORTRAN V
 34 FORTRAN V
                   UNIVAC 1108 WATER CLARITY
UNIVAC 1108 THREE DIMENSIONAL ESTUARINE CIRCU
UNIVAC 1108 SPECTRAL ANALYSIS OF TIME SERIES
                                    WATER CLARITY
THREE DIMENSIONAL ESTUARINE CIRCULATION MODEL
 14 FORTRAN V
 24 FORTRAN IV
134 FORTRAN IV
 43 FORTRAN IV
                    UNIVAC 1108 LISTS EVERY FUNDRECTH VALUE SNOOP
 43 FORTRAN IV
                    UNIVAC 1108 NAVIGATION CCMPUTATIONS TPNAV
                   UNIVAC 1108 EDITS GEOPHYSICAL DATA ZEDIT
UNIVAC 1108 GEOPHYSICAL DATA CLNVERSION HANDY
UNIVAC 1108 NORMAL MODE PROPAGATION MODEL
 43 FORTRAN IV
 43 FORTRAN IV
 93 FORTRAN V
 53 FORTRAN IV
                    UNIVAC 1108 GENERATES ZOCPLANKTON TAXONOMIC DIRECTORY
 53 FORTRAN IV
                    UNIVAC 1108 DEEP CCEAN ZCCPLANKTON DISTRIBUTION
 53 FORTRAN IV
                    UNIVAC 1108 DEEP CCEAN ZCCPLANKTON POPULATION STATISTICS
                   UNIVAC 1108 CABLE TCWED EUCY CUNFIGURATIONS IN A TURN
UNIVAC 1108 FREE-FLCATING SPAR-ARRAY DYNAMICS
UNIVAC 1108 FREE-FLCATING SPAR-BUGY DYNAMICS
 33 FORTRAN V
 33 FORTRAN V
 33 FORTRAN V
 33 FORTRAN V
                    UNIVAC 1108 SHIP SUSPENDED ARRAY DYNAMICS
 36 FORTRAN V
                    UNIVAC 1108 TOWED SYSTEM DYNAMICS
                   UNIVAC 1108 TRAPEZCIDAL ARRAY DEPLOYMENT DYNAMICS
UNIVAC 1108 STD-S/V DATA S2049
UNIVAC 1108 STEADY-STATE SUBSURFACE BUOY SYSTM CONFIGURATION
 36 FORTRAN V
 16 FORTRAN V
 36 FORTRAN V
 36 FORTRAN V
                    UNIVAC 1108 TOWED ARRAY DYNAMICS
 76 FORTRAN V
                    UNIVAC 1108
                                    IN-SITU CURRENT
 76 FORTRAN
                    UNIVAC 1108
                                    WATER DISPLACEMENT DISPLA
                   UNIVAC 1108 STORM SURGE
UNIVAC 1108 WAVE REFRACTION
UNIVAC 1108 CONVERTS DIGITIZER CATA DYGYT
 84 FORTRAN IV
 84 FORTRAN IV
 46 FORTRAN IV
 46 FORTRAN IV
                    UNIVAC 1108 EDITS REDUCED GEOPHYSICAL DATA EDIT
 42 FORTRAN IV
                    UNIVAC 1108 LISTS RAW DATA 2LIST
                   UNIVAC 1108 PLOTS TRACKLINE QCKDRAW UNIVAC 1108 PLCTS CCNTOUR CROSSING I UNIVAC 1108 PLOTS GEOPHYSICAL DATA FUNIVAC 1108 STEADY STATE TRAPEZOIDAL
 42 FORTRAN IV
                                    PLCTS CENTOUR CROSSING INTERVALS DOUBLX PLCTS GEOPHYSICAL DATA PLCT2
 42 FORTRAN IV
 42 FORTRAN IV
 32 FORTRAN V.
                                    STEADY STATE TRAPEZOIDAL ARRAY CONFIGURATIONS
 32 FORTRAN V
                    UNIVAC 1108 ANCHOR LAST-BUGY SYSTEM DEVELOPMENT DYNAMICS
 45 FORTRAN IV UNIVAC 1108 PATTERN FUNCTION CALCULATIONS
```

44.4

```
45 FORTRAN V
                  UNIVAC 1108 RAYLEIGH-MORSE BOTTOM REFLECTION COEFFICIENTS
                  UNIVAC 1108 PROPAGATION LCSS
45 FORTRAN V
                  UNIVAC 1108
UNIVAC 1108
 45 FORTRAN V
                                 AMOS PROPAGATION LOSS
125 FORTRAN
                                 SPECTRAL ANALYSIS SUBROUTINES
                  UNIVAC 1108
35 FORTRAN V
                                 FIXED THIN LINE ARRAY STEADY STATE CONFIGURATION
35 FORTRAN V
                  UNIVAC 1108
                                 MARINE CORER DYNAMICS
                  UNIVAC 1108
UNIVAC 1108
UNIVAC 1108
35 FORTRAN V
                                 STEADY-STATE BUOY SYSTEM CONFIGURATIONS
 45 FORTRAN IV
                                 REGIONAL FIELD RESIDUAL MAGNETIC ANOMALY GAMMA
45 FORTRAN IV
                                 GRAVITY GAL
                  UNIVAC 1108 PLOTS PROFILES CF GEOPHYSICAL DATA DISPLOT
 45 FORTRAN IV
                  UNIVAC 1108
37 FCRTRAN V
                                STEADY STATE CABLE LAYING
37 FORTRAN V
                  UNIVAC 1108 TOWED ARRAY CONFIGURATIONS
                  UNIVAC 1108 TRAPEZCIDAL ARRAY DYNAMICS
UNIVAC 1108 TRUE CCEAN CEPTH FATHCR
UNIVAC 1108 SCUND VELCCITY FOR MARINE SEDIMENTS
 37 FORTRAN V
 47 FORTRAN
 97 FORTRAN
77 FORTRAN V
                  UNIVAC 1108 CURRENT METER PRINT
77 FORTRAN V
                  UNIVAC 1108 CURRENT METER PLOT
                  UNIVAC 1108 CONVERT CURRENT METER TAPE
UNIVAC 1108 CURRENT METER DATA MPRINTO
UNIVAC 1108 CURVE FITTING VELOCITY PROFILE NEWFIT
77 FORTRAN V
 77 FCRTRAN V
138 FORTRAN V
                  UNIVAC 1108 SEDIMENT SIZE
 48 FORTRAN
 48 FORTRAN IV UNIVAC 1108 BOTTOM SEDIMENT DISTRIBUTION PLOT
```

XERCX CATA SYSTEMS

10	FORTRAN	ΙV	XDS	SIGMA	7	GECMAGNETIC FIELD MFIELD READS STATICN DATA
	FORTRAN			SIGMA	-	
_	FCRTRAN	_				VOLUME TRANSPORT VTR
	FORTRAN		_	SIGMA	-	SIGMA-T SIGMAT AND DSIGMT
	FORTRAN			SIGMA	-	
	FORTRAN			SIGMA	-	POTENTIAL TEMPERATURE POTEMP
_	FORTRAN					SPECIFIC VOLUME SPAGE
	FORTRAN					WHOI BICLOGY SERIES FTAPE
	FORTRAN					WHCI BICLOGY SERIES FLISHT
	FORTRAN			SIGMA	•	WHCI BICLCGY SERIES CHKSPIT
	FORTRAN		XDS	SIGMA	7	WHCI BICLCGY SERIES SELECT
50	FORTRAN	I۷	XDS	SIGMA	7	WHOI BIGLOGY SERIES CHANAT
50	FORTRAN	I۷	XDS	S IGMA	7	WHOI BICLCGY SERIES PREPLOTG
50	FORTRAN	I۷	XDS	SIGMA	7	WHCI BIOLOGY SERIES PLOTSPECG
50	FORTRAN	I۷	XDS	SIGMA	7	WHCI BICLCGY SERIES STATAB
119	FORTRAN	I۷	XDS	S IGMA	7	PLOT CF FREQUENCY DISTRIBUTION THISTO
119	FORTRAN	I۷	XDS	SIGMA	7	VELCCITY VECTOR AVERAGES VECTAV
119	FORTRAN	I۷	XDS	SIGMA	7	PROGRESSIVE VECTORS PROVEC
119	FORTRAN	IV	XDS	SIGMA	7	PLCTS DATA ALONG TRACK
119	FORTRAN	I۷	XDS	SIGMA	7	PROFILE VERSUS TIME OR DISTANCE
9	FORTRAN	I۷	XDS	SIGMA	7	DYNAMIC HEIGHT DYNHT
9	FCRTRAN	ΙV	XDS	SIGMA	7	POTENTIAL ENERGY ANOMALY PEN
9	FORTRAN	I۷	XDS	SIGMA	7	VARIOUS PARAMETERS FROM STATION DATA OCCOMP
9	FORTRAN	LV	XDS	SIGMA	7	SPECIFIC VOLUME ANCMALY SVANOM
9	FORTRAN	I۷	XDS	SIGMA	7	PRESSURE SUBROUTINE PRESS
38	FORTRAN	ΙV				X-RAY DIFFRACTION ANALYSIS
39	FORTRAN	Į٧		SIGMA		MAGNETIC ANCHALIES MAG2D
136	FORTRAN	I۷	XDS	SIGMA	7	STATISTICS FROM WHOI FORMAT STATS
106	FORTRAN	I۷	XDS	SIGMA	7	SUM OF FINITE ROTATIONS ON A SPHERE SUMPOT
105	FORTRAN	I۷	XDS	SIGMA	7	TRANSFORMATION OF SPHERICAL COORDINATES ROTGUT
143	FCRTRAN	I۷				THERMOMETER CORRECTION TOPLO
6	FORTRAN	L۷		SIGMA		FLEXIBLE SYSTEM BIG PHYS CHEM DATA SEDHYP

```
SUBROUTINES PHYS CHEM BIO PARAMETERS
  6 FORTRAN IV
                 XDS SIGMA 7
  6 FORTRAN IV
                                INTERPOLATION SUBROUTINES SOUND VELCCITY SONVEL
                 XDS SIGMA 7
 97 FORTRAN IV
                 XDS SIGMA 7
                                DEPTH CORRECTION MTCOR SOUND VELOCITY
 97 FORTRAN IV
                 XDS SIGMA 7
 77 FORTRAN IV
                 XDS SIGMA 7
                                CURRENT METER CLOCK SEQUENCE XTAL
118 FORTRAN IV
                 XDS SIGMA 7
                                HORIZCHTAL HISTOGRAMS HISTO
                 XDS SIGMA 7
XDS SIGMA 7
118 FORTRAN IV
                                PRINTER PLCTS LISPLO
148 FORTRAN IV
                                EDITING FOR WHOI FORMAT SCRUB
                 XDS SIGMA 7
                                BRUNT-VAISALA FREQUENCY OBVFRQ
  8 FORTRAN IV
 78 FORTRAN IV
                                CURRENT METER CALIBRATION CASDEC
                 XDS SIGMA 7
 78 FCRTRAN LV
                 XDS SIGMA 7
                                CURRENT METER DATA REDUCTION AND EDITING CARP
                                CONVERTS NECC FORMAT DATA TO BNDO FORMAT
147 FORTRAN IV
                 XDS SIGMA 7
                 XDS SIGMA 7
XDS SIGMA 7
                                CONVERTS DATA TO BNDO FORMAT TRANSCOD
READS BNDC FCRMAT LATA LSTA 1142
147 FORTRAN IV
147 FORTRAN IV
                                PROCESSES STC AND CTD DATA SEDSTD
  7 FORTRAN IV
                 XDS SIGMA 7
102 FORTRAN IV
                 XDS SIGMA 7
                                RAYTRACE
```

INSTITUTION INDEX

ARMY CCRPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, FORT BELVOIR, VA

84 FORTRAN IV UNIVAC 1108 STORM SURGE 84 FORTRAN IV UNIVAC 1108 WAVE REFRACTION

ARTHUR D LITTLE, INC, CAMBRIDGE, MA

101 FORTRAN II IBM 7090 ACOUSTIC RAY TRACING
134 FORTRAN IBM 7090 TWO-DIMENSICNAL AUTOCORRELATION
134 FORTRAN IBM 1401 TWO-DIMENSICNAL AUTOCORRELATION

BCO NACIONAL DE CADOS OCEANOGRAFICOS, BRAZIL

28 FORTRAN IV IBM 360/40 MATHEMATICAL MODEL OF COASTAL UPWELLING

BNDO, CENTRE NATIONAL POUR L'EXPLOITATION DES OCEANS, FRANCE

147 FORTRAN IV XDS SIGMA 7 CONVERTS NCCC FORMAT DATA TO BNDO FORMAT 147 FORTRAN IV XDS SIGMA 7 CONVERTS DATA TO BNDO FORMAT TRANSCOD XDS SIGMA 7 147 FORTRAN IV READS BNDC FCRMAT DATA LSTA 1142 FLEXIBLE SYSTEM BIG PHYS CHEM DATA SEDHYP XDS SIGMA 7 6 FORTRAN IV 6 FORTRAN IV XDS SIGMA 7 SUBROUTINES PHYS CHEM BIO PARAMETERS 6 FORTRAN IV XDS SIGMA 7 INTERPOLATION SUBROUTINES 7 FORTRAN IV XDS SIGMA 7 PROCESSES STD AND CFD DATA SEDSTD

BECFORD INSTITUTE OF OCEANOGRAPHY, CANADA

139 118	FORTRAN II FORTRAN II FORTRAN FORTRAN	CDC 3100 GE 225 CDC 3100 PDP-8	LEAST SQUARES CURVE FITTING 2 3 & 4 DIMENSIONS CURVE FITTING CRVFT SECTION PLOTTING SECTION PLOTTING
		CDC 3100	SALINITY ANCMALY ISALBP
		CDC 3100	OXYGEN SATURATION DXYGEN ANCMALY ISATBP
		-	
_	FORTRAN II		PLOT THETA-S CURVES
3	FORTRAN II	CDC 3100	PLDT THETA-S CURVES
3	FORTRAN II	CDC 3100	PLOTS STATICN POSITIONS
3	FORTRAN II	PDP-8	PLOTS STATICN POSITIONS
3	FORTRAN II	CDC 3150	NUTRIENT CONCENTRATION PEAKS
3	FORTRAN IV	HP 2100A	STD TABLES AND PLOTS STD
125	FORTRAN 32	CDC 3100	TIME SERIES PLOTTING
125	FORTRAN 32	PDP-8	TIME SERIES PLCTTING
125	MS FORTRAN	CDC 6400	TIME SERIES ANALYSIS PROGRAMS TSAP
125	MS FORTRAN	CDC 3150	TIME SERIES ANALYSIS PROGRAMS TSAP
126	MS FORTRAN	CDC 3150	TIME SERIES-ANALOG TO DIGITAL A TO D
22	FORTRAN IV	CDC 3150	ALKALINITY ALCT
47	FORTRAN IV	CDC 3150	GECPHYSICAL CATA STORAGE AND RETRIEVAL GEOFILE
79	FCRTRAN	CDC 3150	CURRENT METER DATA PROCESSING SYSTEM TIDE

CALIFORNIA DEPARTMENT OF WATER RESOURCES, SACRAMENTO, CA

116 FORTRAN CDC 3300 VERTICAL BAR GRAPHS

CENTRO ARGENTINO DE DATOS OCEANOGRAFICOS, ARGENTINA

4	COBOL			CALCULATION OF THERMOMETRIC VALUES
4	COBOL	IBM	360/50	CONSISTENCY OF PHYSICAL AND CHEMICAL DATA
4	FCRTRAN	IBM	360/50	CONSISTENCY OF PHYSICAL AND CHEMICAL DATA
4	FORTRAN			CALCULATION OF THERMOMETRIC VALUES
4	COBOL			STATICN DATA SYSTEM FINAL VALUES
4	FORTRAN			STATION DATA SYSTEM FINAL VALUES

COAST GUARD OCEANOGRAPHIC UNIT, WASHINGTON, CC

11 FCRTRAN IV CDC 3300	CXYGEN CPLCT
11 FORTRAN IV CDC 3300	CHLOROPHYLL CHLO
11 FORTRAN IV CDC 3300	SALINITY SALTY
11 FCRTRAN IV CDC 3300	TEMPERATURE SALINITY CLASS VOLUME TSVOL
12 FORTRAN IV CDC 3300	THERMCMETER CGRRECTION THERZ
12 FORTRAN IV CDC 3300	TRANSPORT XPCRT

COAST GUARD, ICE PATROL, NEW YORK, NY

91 FORTRAN IV CDC 3300 ICEBERG DRIFT ICE-PLOT

COLUMBIA UNIVERSITY, HUDSON LABORATCRIES, CCBES FERRY, NY

102 FCRTRAN RAY TRACING KLERER-MAY USER LANGUAGE

COLUMBIA UNIVERSITY, LAMONT-DOHERTY GEOLOGICAL CBSERVATORY, PALISADES, NY

145 FORTRAN II	IBM 1130	REDUCTION AND DISPLAY OF DATA ACQUIRED AT SEA
135 FORTRAN	IBM 7090	FOURIER ANALYSIS LIO1

CORNELL UNIVERSITY, ITHACA, NY

143	FORTRAN	I۷	IBM	360	AREAL CONCENTRATION INTEGRATE
143	FORTRAN	ΙV	IBM	360	UNWEIGHTED AVERAGES AVERAGE
22	FORTRAN		IBM	360	CO2 AND DC SAT
54	FORTRAN	ΙV	IBM	360	PIGMENT RATIC
54	FORTRAN	ΙV	IBM	360	SUCCESSION
54	FORTRAN	ΙV	IBM	360	SPECIES ABUNCANCE

ENVIRONMENTAL DATA SERVICE, NATIONAL CCEANOGRAPHIC DATA CENTER, WASHINGTON, DC

138 FORTRAN IV		FITS A SMECTH CURVE
141 PL/1	IBM 360/65	LINEAR INTERPOLATION LININT
141 PL/1	IBM 360/65	LAGRANGIAN THREE POINT INTERPOLATION LAGSPT
141 FORTRAN IV	IBM 360/65	CALCULATES SPLINE COEFFICIENT SPLCOF
141 FORTRAN IV	IBM 360/65	INTERFCLATING BY CUBIC SPLINE
97 FORTRAN	IBM 360/65	SOUND VELCCITY WILSONS FORMULA WESND
97 FORTRAN	IBM 360/65	SOUND VELOCITY WILSONS FORMULA SVELFS
97 FORTRAN	IBM 360/65	SOUND VELCCITY WILSONS FORMULA VELPRS
150 FORTRAN IV	IBM 360/65	FILE INDEPENDENT GEN APP SYS GAS GASDIPBS
150 FORTRAN IV	' IBM 360/65	FILE INDEPENCENT GEN APP SYS GAS GASSAMPC
150 FORTRAN IV	IBM 360/65	FILE INCEPENCENT GEN APP SYS GAS GASEINV
150 FORTRAN IV	IBM 360/65	FILE INCEPENCENT GEN APP SYS GAS GASCCI
150 FORTRAN IV	IBM 360/65	FILE INCEPENCENT GEN APP SYS GAS GASVPRT
150 FORTRAN IV	IBM 360/65	FILE INDEPENDENT GEN APP SYS GAS GVAREFRM

```
FILE INDEPENDENT GEN APP SYS GAS CANADA
150 FERTRAN IV
                 IBM 360/65
                              FILE INCEPENCENT GEN APP SYS GAS GASFILE INCEPENCENT GEN APP SYS GAS GASVASUM
                 IBM 360/65
150 FORTRAN IV
150 FORTRAN IV
                 IBM 360/65
                              FILE INDEPENDENT GEN APP SYS GAS ALTERGAS
151 FORTRAN IV
                 IBM 360/65
151 FORTRAN IV
                 IBM 360/65
                               FILE INDEPENDENT GEN APP SYS GAS GASB
151 FORTRAN IV
                 IBM 360/65
                               FILE INCEPENCENT GEN APP SYS GAS NODCSQ
151 FORTRAN IV
                 IBM 360/65
                               FILE INDEPENDENT GEN APP SYS GAS NAMES
                              FILE INDEPENDENT GEN APP SYS GAS SD2 GAS FILE INCEPENDENT GEN APP SYS GAS GAS THERM
151 FORTRAN IV
                 IBM 360/65
150 PL/1
                 IBM 360/65
150 ASSEMBLER
                 IBM 360/65
                               FILE INDEPENDENT GEN APP SYS GAS GASTHERM
                1BM 360/65
150 ASSEMBLER
                              FILE INDEPENDENT GEN APP SYS GAS INDATA
150 ASSEMBLER
                IBM 360/65
                              FILE INDEPENDENT GEN APP SYS GAS CREATE
                IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS CREATE
IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS CHEMBO
IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS CHEMBO
150 ASSEMBLER
150 ASSEMBLER
                IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS DEPTHSC
150 ASSEMBLER
150 ASSEMBLER
                 IBM 360/65 FILE INDEPENDENT GEN APP SYS GAS LATLON80
150 ASSEMBLER
                 IBM 360/65 FILE INCEPENCENT GEN APP SYS GAS GASCRDER
                 IBM 360/65
IBM 360/65
151 ASSEMBLER
                               SDRETV
151 ASSEMBLER
                               SD2TCSD1
152 ASSEMBLER
                 IBM 360/65
                               SDPRT2
152 ASSEMBLER
                IBM 360/65
                               SUPERSEL
152 ASSEMBLER
                IBM 360/65
                               SDPASS
                 IBM 360/65
152 ASSEMBLER
                               XORDER
                 IBM 360/65
152 ASSEMBLER
                               XBTCCUNT
                 IBM 36C/65
153 ASSEMBLER
                               RETXET
153 ASSEMBLER
                IBM 360/65
                               XBTCCNV
153 ASSEMBLER
                 IBM 360/65
                               RETET
153 ASSEMBLER
                 IBM 36C/65
                               BTLISTC
                 IBM 360/65
152 FCRTRAN
                               XBTQKCUT
153 FORTRAN IV
                 IBM 360/65
                               XBSELECT
                 IBM 360/65
153 FORTRAN IV
                               XBMSINV
15.3 FORTRAN IV
                 IBM 360/65
                               XBGECSUM
                IBM 360/65
153 FORTRAN IV
                               CANWMG
                 IBM 360/65
IBM 360/65
151 PL/1
                               SD2CHAR
152 PL/1
                               SDGECIV
152 PL/1
                IBM 360/65
                               XBEVALU
152 PL/1
                IBM 360/65
                               XBCCNV
                IBM 360/65
152 PL/1
                               XBENKC
152 PL/1
                IBM 360/65
                               XBTNWSUM
                IBM 360/65
153 PL/1
                               BTGECIV
153 PL/1
                 IBM 360/65
                               SCHNINE
                IBM 360/65
153 PL/1
                               SCMULTI
I53 PL/1
                IBM 360/65
                               DRYLAND
 18 FORTRAN
                IBM 360/65
                               ISENTROPIC INTERPOLATION
 18 ASSEMBLER
                 IBM 360/65
                               POTENTIAL TEMP AND/OR DENSITY POTDEN
                             SIGMAT
                 IBM 360/65
 18 FORTRAN
 18 FORTRAN IV IBM 360/65
                               DYNAMIC DEPTH ANOMALY DYANCH
 18 FORTRAN
                 IBM 360/65
                               SALINITY FROM CONDUCTIVITY T P SALINE
                 IBM 360/65
 19 FORTRAN
                               VOLUME TRANSPORT FUNCTION QFUN
 19 FCRTRAN IV
                 IBM 360/65
                               POTENTIAL TEMP AND DENSITY PODENS
 19 FORTRAN IV
                 IBM 360/65
                               VOLUME TRANSPORT VOLTRA
                 IBM 360/65
                               COMPUTES PRESSURE PRESSR
 19 FORTRAN IV
 20 ASSEMBLER
                 IBM 360/65
                               TEMPERATURE CIFFERENCE CALCULATIONS
                               COMPUTE GREAT CIRCLE PATH GCIRC
115 FORTRAN IV
                 IBM 360/65
115 FCRTRAN IV
                 IBM 360/40
                              MAP PROJECTIONS AND GRIDS MAP
 78 ASSEMBLER
                 IBM 360/65
                               SURFACE CURRENT SUMMARY SUFCUR
```

ENVIRONMENTAL DATA SERVICE, NATIONAL GEOPHYSICAL AND SOLAR-TERRESTRIAL DATA CENTER, BOULDER, CO

- 41 FORTRAN IV IBM 360/65 MARINE GECPHYSICAL DATA REDUCTION
 41 FORTRAN IV IBM 360/65 PLOTS PROFILES OF BATHYMETRY AND MAGNETIC

ENVIRONMENTAL DATA SERVICE, CENTER FOR EXPERIMENT CESIGN AND DATA ANALYSIS, WASHINGTON, DC

```
139 FORTRAN IV IBM 360/65 FITS POLYNOMIAL P3TERM 142 FORTRAN IV IBM 360/65 CHECKS ANGLES ThOPI
   142 FORTRAN IV CDC 6600
                                   CHECKS ANGLES TWOPI
                     IBM 360/65 PLOTS SCATTERGRAM SCTGM4 SCTGMS
  122 FORTRAN IV
   123 FORTRAN IV
                    CDC 6600 X-Y PLOTS EBTPLT
148 FORTRAN IV
                    CDC 6600
                                    REPRODUCE AND SERIALIZE DECK DUPE
                     IBM 360/65 FLAGS SUSPICIOUS DATA VALUES EDITO
IBM 360/65 JULIAN DAY CONVERSION ROUTINES JULDAY
IBM 360/65 JULIAN DATE CONVERSION ROUTINES JULDAY
   148 FORTRAN IV
   144 FORTRAN IV
   144 FORTRAN IV
   144 FORTRAN IV
                     IBM 360/65 JULIAN CATE CONVERSION ROUTINES JULIAN
                     IBM 360/65
                                    JULIAN DATE CONVERSION ROUTINES JULYAN
   144 FORTRAN IV
                     IBM 360/65
IBM 360/65
   144 FORTRAN IV
                                    JULIAN DATE CONVERSION ROUTINES JULSEC
   144 FORTRAN IV
                                    JULIAN DATE CCNVERSION ROUTINES CESLUJ
                     IBM 360/65 DAY OF THE WEEK NDAYWK
   144 FORTRAN IV
    17 FORTRAN IV CDC 6500
                                    WET BULB TEMPERATURE WETBLA
```

ENVIRONMENTAL PROTECTION AGENCY, GULF BREEZE, FL

51 FORTRAN IV IBM 360 TOXICITY BIDASSAY PROBIT ANALYSIS

ENVIRONMENTAL RESEARCH LABORATGRIES. PACIFIC MARINE ENVIRONMENTAL LABORATORY. SEATTLE, WA

125	FCRTRAN IV	CDC 6400	SCALAR TIME	SERIES TEMPLT7			
87	FORTRAN	CDC 6400	PYRANCMETER	AND RACIGMETER	TIME	SERIES	RAD
78	FORTRAN IV	CDC 6400	VECTOR TIME	SERIES CURPLT6			

ENVIRONMENTAL RESEARCH LABORATORIES, ATLANTIC OCEANOGRAPHIC AND METECROLOGICAL LABCRATCRIES, MIAMI, FL

```
CDC 6600 INTERNAL WAVE OSCILLATIONS ZMODE CDC 7600 INTERNAL WAVE CSCILLATIONS ZMODE
17 FORTRAN
17 FORTRAN
42 FORTRAN IV UNIVAC 1108 LISTS RAW DATA 2LIST
42 FORTRAN IV UNIVAC 1108 PLOTS TRACKLINE QCKDRAW
42 FORTRAN IV UNIVAC 1108 PLCTS CONTOUR CROSSING INTERVALS DOUBLX
                     UNIVAC 1108 PLOTS GEOPHYSICAL DATA PLOT2
42 FORTRAN IV
43 FORTRAN IV
43 FORTRAN IV
                     UNIVAC 1108 LISTS EVERY HUNDRECTH VALUE SNOOP UNIVAC 1108 NAVIGATION COMPUTATIONS TPNAV
43 FORTRAN IV
                     UNIVAC 1108 EDITS GEOPHYSICAL DATA ZEDIT
43 FORTRAN IV
                     UNIVAC 1108 GECPHYSICAL DATA CONVERSION HANDY
                    UNIVAC 1108 LISTS GEOPHYSICAL DATA LISTP
UNIVAC 1108 COURSE, SPEEC, ECTVCS CORRECTION LCXNAV
UNIVAC 1108 CONVERTS GEOPHYSICAL DATA PHONEY
UNIVAC 1108 SOUND VELCCITY VARIATION AND NAVIGATION FATHOR
44 FORTRAN IV
44 FORTRAN IV
44 FORTRAN IV
44 FORTRAN IV
                    UNIVAC 1108 REGIGNAL FIELC RESIDUAL MAGNETIC ANGMALY GAMMA
45 FORTRAN IV
45 FORTRAN IV
                     UNIVAC 1108 GRAVITY GAL
45 FORTRAN IV UNIVAC 1108 PLCTS PROFILES CF GEOPHYSICAL DATA DISPLOT
46 FORTRAN IV UNIVAC 1108 CONVERTS DIGITIZER CATA DYGYT
46 FORTRAN IV UNIVAC 1108 EDITS REDUCED GEOPHYSICAL DATA EDIT
```

1

FISHERIES RESEARCH BOARD OF CANADA, CANADA

```
117 FORTRAN IV IBM 1130
                              PLCTS HYDRO CAST CATA PLOG
117 FORTRAN IV IBM. 1130
                             PLOTS STD DATA STP01
118 FORTRAN IV
146 FORTRAN VI
                             PLGTS TEMPERATURE-SALINITY PSAL 1
                IBM 1130
                              THERMCMETER CORRECTION TCHK2
                IBM 1130
                             TRANSPORT COMPUTATIONS FROM ATMOSPHERIC PRESSURE
  1 FORTRAN I
                IBM 1620
  1 FORTRAN IV
                IBM 1130
                             TRANSPORT COMPUTATIONS FROM ATMOSPHERIC PRESSURE
                             STD CEMPUTATIONS STP02
  1 FORTRAN IV
                IBM 1130
  1 FORTRAN IV
                             HYDRO CAST CCMPUTATIONS
                IBM 1130
  1 FORTRAN
                HP 2115A
                             DIGITIZES STC DATA CEEP
                HP 2115A
                             STD PROCESSING WET
  2 FORTRAN
135 FORTRAN IV
                              ANALYSIS OF NON-LINEAR RESPONSE SURFACE
                IBM 1130
                             MULTIPLE DISCRIMINANT ANALYSIS MULCA
135 FORTRAN IV
               IBM 1130
103 FORTRAN IV
                              SATELLITE RISE AND SET TIMES ALERT ASORT
                IBM 1130
 54 FORTRAN IV
                IBM 1130
                              YIELD PER RECRUIT RYLC BIOM
```

GEOLOGICAL SURVEY, NATIONAL CENTER, RESTON, VA

103 FORTRAN IV	IBM 360/65	ASTRONOMIC POSITION AZIMUTH METHOD
22 FORTRAN IV	IBM 360/65	PERCENTAGE SATURATION OF OXYGEN IN ESTUARY
23 FORTRAN IV	IBM 360/65	WATER CHEMISTRY DIELECTRIC CONSTANT
38 FORTRAN IV	IBM 360/65	GRAVITATIONAL ATTRACTION THO-DIMENSIONAL BODIES

GEOLOGICAL SURVEY, WOODS HOLE, MA

38 FORTRAN IV XDS SIGMA 7 X-RAY DIFFRACTION ANALYSIS 39 FORTRAN IV XDS SIGMA 7 MAGNETIC ANCMALIES MAG2D

GEOLOGICAL SURVEY, MENLO PARK, CA

122 FORTRAN IV	IBM 360/61	PROFILE PLCTS TIME AXIS PROFL3
122 FORTRAN IV	IBM 360/61	PROFILE PLOTS DISTANCE AXIS PFLDST
122 FCRTRAN IV	IBM 360/61	MAP PLCTS MAPPLT

GEOLOGICAL SURVEY, CORPUS CHRISTI, TX

38 FORTRAN IV IBM 1130 SEDIMENT GRAIN SIZE ANALYSIS

INSTITUTE OF OCEANOGRAPHIC SCIENCES, WALES

40 FCRTRAN IV IBM 1130 REDUCTION DISPLAY STORAGE GEOPHYSICAL DATA

INTER-AMERICAN TROPICAL TUNA COMMISSIEN, LA JOLLA, CA

58	FORTRAN	В	6700	NCRMAL DISTRIBUTION SEPARATOR TCPA1
58	FORTRAN	В	6700	SPANNER-RECRUIT CURVE FITTING TOPA2
5€	FORTRAN	В	6700	WEIGHT-LENGTH CURVE FITTING TCPA3
59	FORTRAN	В	6700	AGE CCMPOSITION ESTIMATION TCPB1
59	FCRTRAN	В	6700	ESTIMATE CATCH NUMBERS PERCENT WEIGHT
59	FORTRAN	В	670C	LENGTH-FREQUENCY DISTRIBUTION
60	FORTRAN	В	6700	VON BERTALANFFY GREWTH CURVE FITTING TOPC1
60	FORTRAN	₿	6700	VON BERTALANFFY GROWTH UNEQUAL AGE INTERVAL
60	FORTRAN	В	6700	VON BERTALANFFY GROWTH EQUAL AGE INTERVAL
61	FERTRAN	В	6700	VON BERTALANFFY GROWTH CURVE FITTING TOPC4
64	FORTRAN	8	67C0	ESTIMATION OF LINEAR GROWTH
61	FORTRAN	8	6700	FISHING POWER ESTIMATION TOPOL

62	FERTRAN	В	6700	SURVIVAL RATE ESTIMATION TOPE1
63	FORTRAN	8	6700	FISHING MCRTALITIES ESTIMATION TCPE2
63	FORTRAN	В	6700	RELATIVE YIELD PER RECRUIT
63	FORTRAN	В	6700	YIELD CURVES WITH CONSTANT RATES TOPF2
63	FORTRAN	В	6700	EUMETRIC YIELD TCPF3
64	FORTRAN	В	6700	PIECEWISE INTEGRATION OF YIELD CURVES TCPF4
64	FORTRAN	. В	6700	PIECEWISE INTEGRATION OF YIELD CURVES
65	FORTRAN	8	6700	CONSTANTS IN SCHAEFER'S MODEL TCPF6
65	FORTRAN	В	6700	SCHAEFER LOGISTICS MODEL OF FISH PRODUCTION
65	FORTRAN	В	6700	FITS GENERALIZED STOCK PRODUCTION MODEL TCPF8
65	FORTRAN	В	6700	BIOMETRY-LINEAR REGRESSION ANALYSIS TCSA1
66	FORTRAN	В	6700	GENERALIZED WEIGHTED LINEAR REGRESSICN
66	FORTRAN	В	6700	LINEAR REGRESSION, BOTH VARIABLES
66	FORTRAN	В	6700	BIOMETRY-PRODUCT-MOMENT CORRELATION
67	FORTRAN	. В	6700	COOLEY-LORNES FULTIPLE-REGRESSION
67	FORTRAN	В	6700	BIOMETRY-GCCCNESS OF FIT
67	FORTRAN	В	6700	BIGMETRY-BASIC STATISTIC FOR UNGROUPED DATA
68	FORTRAN	В	6700	BIOMETRY-BASIC STATISTIC FOR GROUPED DATA
68	FCRTRAN	В	6700	BIOMETRY-SINGLE CLASSIFICATION ANOVA
68	FORTRAN	В	6700	BICMETRY-FACTORIAL ANOVA TOSD2
69	FORTRAN	В	6700	BIOMETRY-SUM OF SQUARES STP TCSD3
69	FORTRAN	В	6700	BIOMETRY-STUCENT-NEWMAN-KEULS TEST TCSD4
69	FORTRAN	8	6700	BIOMETRY-TEST OF HLMOGENEITY
69	FORTRAN	₿	6700	BICMETRY-TEST OF EQUALITY
70	FORTRAN	В	6700	BIOMETRY-TUKEY'S TEST
70	FORTRAN	В	6700	BIOMETRY-KRUSKAL-WALLIS TEST TCSE4
70	FCRTRAN	В	6700	BICMETRY-FISHER'S EXACT TEST TOSES
71	FORTRAN	В	6700	BIOMETRY-R X C TEST CF INDEPENDENCE MAP

JOHNS HOPKINS UNIVERSITY, BALITMORE, MD

29 FORTRAN	NUMERICAL MCL ESTUARY	DYNAMICS & KINEMATICS
28 FCRTRAN	SALINITY DISTRIBUTION	IN ONE-DIMENSIONAL ESTUARY

LOS ANGELES CITY SANITATION DEPARTMENT, LCS ANGELES, CA

73 ANS FORTRAN 1	IBM 360	ECCLOGICAL	STATISTICAL	PROGRAMS	ECGSTAT
73 ANS FORTRAN	IBM 370	ECCLOGICAL	STATISTICAL	PROGRAMS	ECOSTAT

MARINE ENVIRONMENTAL DATA SERVICE, CANADA

117	FORTRAN	CDC CYBER	X-Y PLOTS IN A FLEXIBLE FORMAT MEDSPLCT
4	FORTRAN IV	CDC CYBER 74	DAILY SEAWATER CBSERVATIONS
4	FORTRAN	CDC 6400	DATA MGT SYS FOR PHYS CHEM DATA OCEANSV
4	COBOL	IBM 360/85	DATA MGT SYS FOR PHYS CHEM DATA CCEANSV
4	P1 / 3	TRM 360/85	DATA MGT SYS FOR PHYS CHEM DATA OCEANSY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRICGE, MA

72	PL/1	I	ВМ	370/168	MONTE	CARL	: SPILI	LIF	RACKE	R		
135	FORTRAN	IV I	ВМ	360/40	SPECTI	RA PRO	GRAMS	DE1	TRND .	AUTCOV	CRSCGV	FCURTR
85	FORTRAN	I	ВМ	360/40	WATER	WAVE	TEACH!	ING	AIDS	PRCF1		
85	FORTRAN	· I:	ВМ	360/40	WATER	WAVE	TEACH:	I NG	AIDS	UMAX1		
85	FORTRAN	1	ΒM	360/40	WATER	WAVE	TEACH:	ING	AIDS	UTMAX1		
85	FORTRAN	I	ВМ	360/40	WATER	WAVE	TEACH	I NG	AIDS	WMAX1		
85	FORTRAN	I	ВМ	360/40	WATER	WAVE	TEACH.	ING	AIDS	LENG1		
85	FORTRAN	I	ВМ	360/40	WATER	WAVE	TEACH:	ING	AIDS	DETRNO)	
85	FORTRAN	I	3 M	360/40	WATER	WAVE	TEACH!	ING	AIDS	WTMAX2	<u> </u>	

```
85 FORTRAN
                             WATER WAVE TEACHING AIDS UDFT1
              IBM 360/40
85 FCRTRAN
              IBM 360/40
                             WATER WAVE TEACHING AIDS WOFT1
85 FORTRAN
                             WATER WAVE TEACHING AIDS UTCFT1
              IBM 360/40
                             WATER WAVE TEACHING AIDS WTCFT1 WATER WAVE TEACHING AIDS AUTCOV
85 FORTRAN
               IBM 360/40
               IBM 360/40
85 FORTRAN
                             WATER WAVE TEACHING AIDS CRSCOV
85 FORTRAN
               IBM 360/40
85 FORTRAN
               IBM 360/40
                             WATER WAVE TEACHING AIDS FOURTR
               IBM 360/40
86 FORTRAN
                             WATER WAVE TEACHING AIDS PROFILE
86 FORTRAN
               IBM 360/40
                             WATER WAVE TEACHING AIDS REFLI
                             WATER WAVE TEACHING AIDS FORCE AND MOVEMENT WATER WAVE TEACHING AIDS EDSIT
86 FORTRAN
               IBM 360/40
85 FORTRAN
               IBM 360/40
25 FORTRAN IV IBM 360/65
                             MIT SALINITY INTRUSICN PROGRAM
87 PL/1
               IBM 370/180 MARKOVIAN ANALYSIS OF TDF-14 WIND DATA
40 FORTRAN IV IBM 7074
                             COMPUTATION AND PLUTTING OF MAGNETIC ANDMALIES
74 PL/1
               IBM 360/168
                             DRIFT BCTTLE/STATISTICS
               IBM 360/168
74 PL/1
                             DRIFT BCTTLE PLCTS
74 PL/1
               IBM 360/168 REFORMAT AND SCRT GRIFT BOTTLE DATA
```

NATIONAL ENVIRONMENTAL SATELLITE SERVICE, ROCKVILLE, MD

123 FCRTRAN	CDC 6600 '	DISPLAYS VHRR SATELLITE DATA V5DMD
123 FORTRAN	IBM 360/195	MICROFILM PLCTS OF VHRR SATELLITE DATA

NATIONAL INSTITUTE OF OCEANOGRAPHY, ENGLAND

į

139	FORTRAN		IBM 1800	BARTLETT'S CURVE FITTING
145	FORTRAN	I۷	IBM 1800	
37	FCRTRAN	I۷	IBM 1800	CABLE CONFIGURATION
134	FORTRAN	I۷	IBM 1800	GENERATES ARRITRARY FILTER HILOW
136	FORTRAN		IBM 1800	CLUSTER ANALYSIS
84	FORTRAN	I۷	IBM 1800	SHIPBCRNE WAVE RECURDER ANALYSIS SBWRO
103	FCRTRAN		IBM 1800	SATELLITE NAVIGATION
104	FCRTRAN	I۷	IBM 1800	LORAN/DECCA COORDINATES CALCULATION HNAV
104	FORTRAN	I٧	IBM 1800	LORAN/DECCA FILE INITIALIZATION HNV1
104	FERTRAN	I۷	IBM 1800	GECCETIC DISTANCE AND AZIMUTH SDANG

NATIONAL MARINE FISHERIES SERVICE, SOUTHWEST FISHERIES CENTER, LA JCLLA, CA

123	FORTRAN .63	CDC 3600	VERTICALLY ANALYZED CONTOURS VACOTS
12	FORTRAN IV	B 6700	PLOT TEMP LIST MIXED LAYER DEPTH WEEKPLCT
12	ALGOL	B 6700	CONSTANTS FOR HARMONIC SYNTHESIS MEAN SEA TEMP
12	FORTRAN 63	CDC 3600	VERTICAL SECTION PLOTS ESTPAC
13	FERTRAN	CDC 3600	CONVERTS STC CATA RDEDTP
13	FORTRAN	CDC 3600	CORRECTS STD DATA TPMCD
56	FORTRAN	B 6700	LENGTH FREQUENCY ANALYSIS LENFRE
56	FORTRAN	B 6700	YIELD PER RECRUIT FOR MULTI-GEAR FISHERIES
57	FORTRAN	B 6700	A GENERALIZED EXPLCITED POPULATION SIMULATOR
57	FCRTRAN	CDC 6600	A GENERALIZED EXPLCITED POPULATION SIMULATOR
57	FORTRAN	CDC 6600	GENERALIZED STOCK PRODUCTION MODEL PRODEIT
57	FORTRAN	B 6700	GENERALIZED STOCK PRODUCTION MODEL PRODEIT
87	FORTRAN	B 6700	SUMPARIZES WEATHER REPORTS

NATIONAL MARINE FISHERIES SERVICE, SOUTHWEST FISHERIES CENTER, HONOLULU, HI

136 FORTRAN IV IBM 360/65 EXTENDED NCRMAL SEPARATOR PROGRAM ENCRMSEP

NATIONAL MARINE FISHERIES SERVICE, SOUTHEAST FISHERIES CENTER, MIAMI, FL

124 FORTRAN IV IBM 360/65 CXYGEN PHCSPHATE DENSITY PLCTS
124 FORTRAN IV IBM 360/65 GENERAL MERCATOR PLCT

NATIONAL OCEAN SURVEY, ROCKVILLE, MD

```
112 FCRTRAN IV
                   IBM 360/30
                                   ADJUSTS A STATE PLANE COORDINATE TRAVERSE
                                   NOS SCIENTIFIC SUBROUTINE SYSTEM ANGLE NOS SCIENTIFIC SUBROUTINE SYSTEM ANLIS NOS SCIENTIFIC SUBROUTINE SYSTEM APCTN
113 FORTRAN IV
                   IBM 360/65
                   IBM 360/65
113 FORTRAN IV
113 FORTRAN IV
                   IBM 360/65
113 FORTRAN IV
                   IBM 360/65
                                   NOS SCIENTIFIC SUBROUTINE SYSTEM APCWN
                   IBM 360/65
113 FERTRAN IV
                                  NOS SCIENTIFIC SUBROUTINE SYSTEM APOLY
                                  NOS SCIENTIFIC SUBROUTINE SYSTEM CGSPC
NOS SCIENTIFIC SUBROUTINE SYSTEM CUBIC
NOS SCIENTIFIC SUBROUTINE SYSTEM EXCEB
II3 FORTRAN IV
113 FORTRAN IV
                   IBM 360/65
                   IBM 360/65
                   IBM 360/65
113 FORTRAN IV
113 FORTRAN IV
                   IBM 360/65
                                  NOS SCIENTIFIC SUBROUTINE SYSTEM GMLIC
113 FORTRAN IV
                                  NOS SCIENTIFIC SUBROUTINE SYSTEM HIFIX
                   IBM 360/65
                   IBM 360/65
                                  NOS SCIENTIFIC SUBROUTINE SYSTEM LORAN
NOS SCIENTIFIC SUBROUTINE SYSTEM OMEGA
NOS SCIENTIFIC SUBROUTINE SYSTEM SODIN
114 FORTRAN IV
114 FORTRAN IV
                    IBM 360/65
                   IBM 360/65
114 FORTRAN IV
                                   NOS SCIENTIFIC SUBROUTINE SYSTEM SCOPN
114 FORTRAN IV
                   IBM 360/65
114 FORTRAN IV
                   IBM 360/65
                                   NOS SCIENTIFIC SUBROUTINE SYSTEM TPFIX
114 FORTRAN IV
                   IBM 360/65
                                   NCS SCIENTIFIC SUBROUTINE SYSTEM UTMCO
114 SPS
                   IBM 1620
                                   COMPUTES GECGRAPHIC POSITION'S
114 SPS
                   IBM 1620
                                   LORAN C VERSIEN2
 80 FORTRAN IV CDC 6600
                                   HARMONIC ANALYSIS OF DATA AT TIDAL FREQUENCIES
```

NATIONAL WEATHER SERVICE, TECHNIQUES CEVELCPMENT LABORATORY, SILVER SPRING, MC

82	FORTRAN	I۷	CDC 6600	HURRICANE STORM SURGE FORECASTS SPLASH I
82	FORTRAN	ΙV	CDC 6600	HURRICANE STORM SURGE FORECASTS SPLASH II
82	FORTRAN	I۷	IBM 360/195	EAST COAST STORM SURGE
82	FCRTRAN	I٧	IBM 360/195	WAVE FORECASTS
80	FORTRAN	I۷	IBM 360/195	ASTRONOMICAL TIDE PREDICTION

NAVY, CIVIL ENGINEERING LABORATORY, PORT HUENEME, CA

30 FORTRAN IV C	DC 6600	DEEP OCEAN LOAD HANDLING SYSTEMS DOLLS
30 FORTRAN IV C	DC 6600	LOAD MOTION AND CABLE STRESSES CABI
30 FORTRAN IV C	DÇ 66C0	SOIL TEST DATA TRIAX
30 FERTRAN IV C	DC 6600	DYNAMIC STRESS RESPONSE OF LIFTING LINES CABANA
31 FORTRAN IV C	DC 6600	DYNAMIC RESPONSE OF CABLE SYSTEM SNAPLG
31 FORTRAN IV C	DC 6600	CHANGES IN ELECTROMECHANICAL CABLE RAMSC
31 FORTRAN IV C	DC 6600	END RESPONSES IN ELECTROMECHANICAL CABLE RADAC
48 FORTRAN II I	BM 1620	SOLL AND SEDIMENT ENGINEERING TEST DATA

NAVY, NAVAL POSTGRADUATE SCHOOL, MCNTEREY, CA

17 FOR	TRAN IV	IBM 360	CBJECTIVE THERMOCLINE ANALYSIS
17 FOR	TRAN IV	CDC 6500	GBJECTIVE THERMOLINE ANALYSIS
91 FOR	TRAN 60	IBM 1604	WINE CRIFT AND CONCENTRATION OF SEA ICE ICEGRID
97 FOR	TRAN	CDC 3100	SGUND SPEED COMPUTATION MODEL SOVEL
97 FCR	TRAN	CDC 3200	SOUND SPEED COMPUTATION MODEL SOVEL
97 FOR	TRAN	CDC 1604	SOUND SPEEC COMPUTATION MODEL SOVEL
93 FCR	TRAN IV	CDC 1604	SCUND SCATTERING BY CRGANISMS SKAT
72 FOR	TRAN IV	CDC 6500	THERMAL POLLUTION MODEL
72 FOR	TRAN IV	CDC 1604	THERMAL POLLUTION MODEL

```
72 FORTRAN
                CDC 3100
                              DANISH ADVECTION PROGRAM
134 FORTRAN IV IBM 360
                              TIME SERIES ANALYSIS BLACKY
                CDC 6500
CDC 7600
CDC 3100
                              FRENCH SPECTRC-ANGULAR WAVE MODEL
83 FORTRAN IV
83 FORTRAN IV
83 FORTRAN IV
                              FRENCH SPECTRG-ANGULAR WAVE MODEL
                              SURF PREDICTION MODEL
                CDC 3100
83 FORTRAN
                              SINGULAR WAVE PREDICTION MODEL
83 FORTRAN
                CDC 3200
                              SINGULAR WAVE PREDICTION MODEL
22 FORTRAN
                IBM 360
                              SPECIFIC CONDUCTIVITY WITH PRESSURE EFFECT
                CDC 6500
CDC 7600
                              MULTI-LAYER HYDRODYNAMIC-NUMBERICAL MODEL
24 FORTRAN IV
24 FORTRAN IV
                              MULTI-LAYER HYDRODYNAMICAL-NUMERICAL MODEL
                CDC 6500
                              SINGLE LARGE HYDRODYNAMICAL-NUMERICAL MODEL
24 FORTRAN IV
                              SINGLE LARGE HYDRODYNAMICAL-NUMERICAL MCDEL
24 FORTRAN IV
                IBM 360
87 FORTRAN
                CDC 1604
                              OCEAN CLIMATELOGY ANALYSIS MODEL ANALYS
                CDC 6500
CDC 3100
                              HURRICANE HEAT POTENTIAL MODEL
88 FORTRAN IV
88 FORTRAN
                              MIXED LAYER DEPTH ANALYSIS MODEL MEDILD
                CDC 3100
88 FORTRAN
                             ATMCSPHERIC WATER CONTENT MODEL
                              OCEAN-ATMOSPHERE FEEDBACK MODEL
88 FORTRAN IV CDC 6500
89 FORTRAN
                CDC 1604
                              WIND COMPUTATION FROM SHIP OBSERVATIONS TRUWIND
                CDC 7600
CDC 3100
CDC 6500
75 FORTRAN
                              OPTIMIZED MULTI-LAYER HN MODEL
75 FORTRAN
                              OPTIMIZED MULTI-LAYER HN MODEL
75 FORTRAN
                              MEAN DRIFT ROUTINE
75 FORTRAN
                CDC 1604
                              MEAN DRIFT ROUTINE
80 FORTRAN 60 IBM 360/195 TIDES IN THE CPEN SEA
```

NAVY, FLEET NUMERICAL WEATHER CENTRAL, MONTEREY, CA

148 FORTRAN II CDC 1604 FORTRAN ACCESS TO SCIENTIFIC DATA FASD 76 FORTRAN CDC 6500 SEARCH AND RESCUE PLANNING NSAR

NAVY, NAVAL UNCERSEA RESEARCH AND CEVELOPMENT CENTER, SAN DIEGO, CA

121 FORTRAN 63 CDC 1604 MACHINE PLCTTING ON MERCATOR PROJECTION 14 FORTRAN EXT CDC 6500 OCEANCGRAPHIC DATA COMPUTATION TPCONV VARIANCE AND STANDARD DEVIATION SUMMARY

NAVY, NAVAL ELECTRONICS LABORATORY, SAN DIEGO, CA

120 FORTRAN IBM 360/65 SEQUENTIAL PLCTTING

NAVY, NAVAL UNCERSEA CENTER, PASADENA, CA

138 FCRTRAN V UNIVAC 1108 CURVE FITTING VELOCITY PROFILE NEWFIT
101 FORTRAIN IV UNIVAC 1108 SONAR IN REFRACTIVE WATER
101 FORTRAN IV UNIVAC 1108 SORTS SCUND RAY DATA RAY SORT
45 FORTRAN IV UNIVAC 1108 PATTERN FUNCTION CALCULATIONS
45 FORTRAN V UNIVAC 1108 RAYLEIGH-MORSE BOTTOM REFLECTION COEFFICIENTS

NAVY, NAVAL UNDERWATER SYSTEMS CENTER, NEW LCNDGN, CT

138 FORTRAN V UNIVAC FITTING A LEAST SQUARES DISTANCE HYPERPLANE 141 FCRTRAN IV UNIVAC 1108 SMCOTHING DATA USING THE CUBIC SPLINE UNIVAC 1108 UNIVAC 1108 UNIVAC 1108 121 FORTRAN OVERLAY PLCTTING OVLPLT 99 FORTRAN V CONTINUOUS GRADIENT RAY TRACING SYSTEM CONGRATS 99 FORTRAN RAY FATH SC4348 93 FORTRAN V UNIVAC 1108 NORMAL MODE PROPAGATION MODEL 94 FORTRAN V UNIVAC 1108 BEAM PATTERNS AND WIDTHS GREAM 94 FORTRAN V UNIVAC 1108 STATISTICS ACGUSTIC MEASUREMENTS AND PREDICTIONS

пľ.

```
94 FORTRAN IV
                UNIVAC 1108 PROPAGATION LOSS FAST FIELD PROGRAM
94 FORTRAN II
                UNIVAC 1108 BOTTOM REFLECTIVITY
45 FORTRAN V
                UNIVAC 1108 PROPAGATION LOSS
                UNIVAC 1108
UNIVAC 1108
45 FORTRAN V
                              AMOS PROPAGATION LOSS
36 FORTRAN V
                              TOWED SYSTEM DYNAMICS
                UNIVAC 1108
36 FORTRAN V
                              TRAPEZGIDAL ARRAY DEPLCYMENT DYNAMICS
37 FORTRAN V
                UNIVAC 1108
                              STEADY STATE CABLE LAYING
37 FORTRAN V
                UNIVAC 1108
                              TOWED ARRAY CONFIGURATIONS
                UNIVAC 1108
UNIVAC 1108
UNIVAC 1108
37 FCRTRAN V
                              TRAPEZCIDAL ARRAY DYNAMICS
125 FORTRAN
                               SPECTRAL ANALYSIS SUBROUTINES
47 FORTRAN
                              TRUE CCEAN DEPTH FATHCR
                UNIVAC 1108
53 FORTRAN IV
                              GENERATES ZOCPLANKTON TAXONOMIC DIRECTORY
53 FORTRAN IV
                UNIVAC 1108
                              DEEP CCEAN ZCOPLANKTON DISTRIBUTION
53 FORTRAN IV
                UNIVAC 1108
                              DEEP CCEAN ZCOPLANKTON POPULATION STATISTICS
74
                               CURRENT PROFILES FROM TILT DATA
                              STD-S/V DATA S2049
STEADY STATE TRAPEZOIDAL ARRAY CONFIGURATIONS
                UNIVAC 1108
UNIVAC 1108
16 FORTRAN V
32 FORTRAN V
                UNIVAC 1108
32 FORTRAN V
                              ANCHOR LAST-BUCY SYSTEM DEVELOPMENT DYNAMICS
33 FORTRAN V
                UNIVAC 1108
                              CABLE TOWED BUCY CONFIGURATIONS IN A TURN
                UNIVAC 1108
UNIVAC 1108
UNIVAC 1108
33 FORTRAN V
                              FREE-FLCATING SPAR-ARRAY CYNAMICS
33 FORTRAN V
                              FREE-FLCATING SPAR-BUDY DYNAMICS
33 FCRTRAN V
                              SHIP SUSPENDED ARRAY DYNAMICS
                UNIVAC 1108
34 FORTRAN V
                              BOCMERANG CCRER DESCENT/ASCENT TRAJECTORIES
34 FORTRAN V
                UNIVAC 1108
                              BUDY-SHIP DYNAMICS
34 FCRTRAN V
                UNIVAC 1108
                              BUCY-SYSTEM CYNAMICS
                UNIVAC 1108
UNIVAC 1108
UNIVAC 1108
34 FORTRAN V
                              FIXED THIN LINE ARRAY DYNAMICS
                              FIXED THIN LINE ARRAY STEADY STATE CONFIGURATION
35 FORTRAN V
35 FORTRAN V
                              MARINE CORER CYNAMICS
35 FORTRAN V
                UNIVAC 1108
                              STEADY-STATE BUCY SYSTEM CONFIGURATIONS
36 FORTRAN V
                UNIVAC 1108
                              STEADY-STATE SUBSURFACE BUDY SYSTM CONFIGURATION
                UNIVAC 1108
36 FORTRAN V
                             TOWED ARRAY EYNAMICS
```

NAVY, NAVAL UNDERWATER SYSTEMS CENTER, NEWPORT, RI

142	FORTRAN	CDC 3300	SOLVE ALGEBRAIC EQUATIONS MATRIX
121	FORTRAN	CDC 3300	PHYSICAL DATA PLOT FRAME
99	FORTRAN	CDC 3300	ACCUSTIC PERFORMANCE AND EVALUATION
94	FCRTRAN	CDC 3300	SOUND REFRACTION CORRECTIONS FITIT
15	FORTRAN		SIGMA-T INVREJ
15	FORTRAN		STD PROCESSING OCEANDATA
15	FORTRAN		INTERNAL WAVES WITCOMB
15	FCRTRAN	CDC 3200	INTERPOLATION FOR UCEANOGRAPHIC DATA
15	FORTRAN	IBM 1620	INTERPOLATION FOR CCEANGGRAPHIC DATA
75	FORTRAN	CDC 3300	CURRENT METER CATA CREATE-C
75	FORTRAN	CDC 3300	CURRENT METER DATA CURRENT
75	FORTRAN	CDC 3300	CURRENT METER DATA CURRPLOT
75	FORTRAN	CDC 3300	CURRENT METER DATA SPECTRUM

NAVY, NAVAL SURFACE WEAPONS CENTER, SILVER SPRING, MD

93 FORTRAN IV	CDC 6500	NORMAL MODE CALCULATIONS NORMOD 3
93 FORTRAN	CDC 6400	HORIZONTAL RANGE

NAVY, NAVAL RESEARCH LABCRATCRY, WASHINGTON, CC

120 FORTRAN CDC 3800 LINE PRINTER PLCTS

```
HP 2100S
124 ASSEMBLY
                             PLOTTER COMMANDS PLOT DVRIG
100 FORTRAN 63 CDC 3800
                             GRASS UNDERWATER ACGUSTICS PREDICTION DISTOV
100 FORTRAN 63
                CDC 3800
                             GRASS UNDERWATER ACQUISTICS PREDICTION VFC
                CDC 3800
CDC 3800
100 FORTRAN 63
                             GRASS UNDERWATER ACCUSTICS PREDICTION CTOUR
100 FORTRAN 63
                             GRASS UNDERWATER ACCUSTICS PREDICTION PREPLT
                CDC 3800
100 FORTRAN 63
                             GRASS UNDERWATER ACCUSTICS PREDICTION SERPENT
                             GRASS UNDERWATER ACCUSTICS PREDICTION RAPLOT
101 FORTRAN 63
                CDC 3800
                CDC 3800
101 FORTRAN 63
                             GRASS UNDERWATER ACGUSTICS PREDICTION LOSSPLOT
16 FCRTRAN IV
                HP 2100S
                             THERMCMETRIC CEPTH CALCULATION CAST
                             THERMOMETER DATA FILE HANDLER THERMO
 16 FORTRAN IV
                HP 2100S
                CDC 3800
16 FCRTRAN
                             INTERNAL GRAVITY WAVES DISPER
 16 FORTRAN IV CDC 3200
                            SEA SURFACE TEMPERATURES ANALYSIS
 31 BASIC
                HP 9830A
                             UNMANNED FREE-SWIMMING SUBMERSIBLE PLOT
                HP 9830A
 32 BASIC
                             UNMANNED FREE-SWIMMING SUBMERSIBLE HOTEL LOAD
32 BASIC
                HP 9830A
                             UNMANNED FREE-SWIMMING SUBMERSIBLE
107 FORTRAN
                CDC 3800
                             ANNOTATED TRACK ON STEREOGRAPHIC PROJECTION
107 FORTRAN IV
                HP 2100S
                             ANNOTES CHART
108 FORTRAN IV
                HP 2100S
                             BATHYMETRIC OR MAGNETICS CHART PROFL
108 FORTRAN IV
                HP 2100S
                            MERCATOR CHART CIGITIZATION ANTRK
                          BATHYMETRIC CHART DIGITIZATION DGBTH
108 FORTRAN IV
                HP 2100S
                HP 2100S
HP 2100S
108 FORTRAN IV
                          PLCTS ON STEREGGRAPHIC CHART ANNOT PLCTS NAVIGATION CATA OCEAN
108 FORTRAN IV
                          LONG BASE LINE ACCUSTIC TRACKING
                HP 2100S
109 FORTRAN IV
89 FORTRAN
                CDC 3800
                             MIE SCATTERING COMPUTATIONS
                CDC 3600
47 FORTRAN
                             PLCTS TRACK AND DATA PROFILE TRACK
                CDC 3800
CDC 3800
47 FORTRAN
                             PLOTS TRACK AND DATA PROFILE TRACK
47 FORTRAN
                             GECDATA
                CDC 3600
47 FORTRAN
                             GEODATA
47 FORTRAN
                CDC 3600
                             MAGNETIC SIGNATURES MAGPLCT
47 FCRTRAN
                CDC 3800
                             MAGNETIC SIGNATURES MAGPLOT
107 FORTRAN
                CDC 3600
                             ANNCTATED TRACK ON STEREOGRAPHIC PROJECTION
```

NAVY, FLEET WEATHER FACILITY, SUITLAND, MD

91 FORTRAN II CDC 160A ICE DRIFT ANALYSIS/FORECAST

NAVY, NAVAL OCEANCGRAPHIC OFFICE, WASHINGTON, CC

120	FORTRAN	IBM 7074	LEAST SCUARES PLOT
		=	
	FORTRAN	UNIVAC 1108	TEMPERATURE SALINITY CORRECTIONS CURVEFIT N1S512
139	FORTRAN	PDP-9	BARTLETT'S CURVE FITTING
	FORTRAN V	UNIVAC 1108	REFORMATS DATA PLOTS TRACK CHART MASTRACK
121	FORTRAN		PRODUCES CONTOUR CHARTS GRIDIT
121	FORTRAN		PRODUCES CONTOUR CHARTS AUTOMATED CONTOUR
100	FORTRAN	IBM 7074	CRITICAL ACCUSTIC RATIO
97	FORTRAN	UNIVAC 1108	SOUND VELOCITY FOR MARINE SEDIMENTS
98	FORTRAN	IBM 7074	LIGHT AND SCUND INSTRUCTION B
45	FCRTRAN	IBM 7074	LIGHT AND SCUNC INSTRUCTION D
144	FORTRAN	IBM 7074	BATHYMETRIC CATA REDUCTION
14	FORTRAN	IBM 7074	MCNTHLY SCNIC LAYER DEPTH
14	FORTRAN	IBM 7074	VERTICAL TEMPERATURE GRADIENTS
14	FORTRAN V	UNIVAC 1108	WATER CLARITY
137	FORTRAN	IBM 7074	SINGLE INTEGRATION
110	FORTRAN I	I IB7 7074	INDIVIDUAL POINT GENERATOR FOR MAP PROJECTIONS
111	FORTRAN I	I IB7 7074	INDIVIDUAL PCINT GENERATOR FOR DISTANCE
111	FORTRAN	IB7 7074	GEGDETIC CATUM REDUCTION
111	FORTRAN	IB7 7074	GEODETIC POSITION COMPUTATION AND PLOT

```
111 FORTRAN
                                ASTRONOMIC LATITUDE
112 FORTRAN
                 CDC 3100
                                SOUNDING PLCT
112 FORTRAN
                 IBM 7074
                                SOUNDING PLCT
112 FCRTRAN
                 IBM 7074
                                SINGLE INTEGRATION
112 FORTRAN
                 CDC 3100
                                SODANG INVERSE
89 FORTRAN
                 IBM 7074
                                SOLAR RADIATION CONVERSION
                 IBM 7074
IBM 7074
89 FORTRAN
                                WINC STRESS
89 FORTRAN
                                TWC-DIMENSIONAL POWER SPECTRUM FOR SWOP II
 90 FERTRAN
                 IBM 7074
                                PREDICTION OF VERTICAL TEMPERATURE CHANGE
 90 FORTRAN
                 IBM 7074
                                CLCUD COVER AND DAILY SEA TEMPERATURE
 46 FORTRAN
                 IBM 7074
                                SEAMCUNT MAGNETIZATION
 46 FORTRAN
                 IBM 7074
                                GBSERVATION ERAPING GRAVITY
 48 FORTRAN UNIVAC 1108 SEDIMENT SIZE
48 FORTRAN IV UNIVAC 1108 BOTTOM SEDIMENT DISTRIBUTION PLOT
 76 FORTRAN
                 IBM 7074
                                CURRENT METER TURBULENCE
76 FORTRAN V
                 UNIVAC 1108 IN-SITU CURRENT
                 UNIVAC 1108 WATER DISPLACEMENT DISPLA
UNIVAC 1108 CURRENT METER PRINT
UNIVAC 1108 CURRENT METER PLOT
 76 FORTRAN
 77 FORTRAN V
 77 FORTRAN V
                 UNIVAC 1108
                                CCNVERT CURRENT METER TAPE
 77 FORTRAN V
 77 FORTRAN V
                 UNIVAC 1108 CURRENT METER DATA MPRINTO
```

NAVY, DEFENSE MAPPING AGENCY HYDROGRAPHIC CENTER, WASHINGTON, DC

109 FORTRAN	UNIVAC 1108	FAA PLCT
109 FORTRAN	UNIVAC 1108	DISTANCE AND AZIMUTH CIRAZD
109 FORTRAN	UNIVAC 1108	PARAMETRIC MAP
110 FORTRAN	UNIVAC 1108	LORAN TO GEOGRAPHIC AND/GEOGRAPHIC TO LERAN
110 FORTRAN	UNIVAC 1108	LORAN COORDINATE COMPUTATION
110 FORTRAN	UNIVAC 1108	LORAN SKYWAVE CORRECTION

NAVY, NAVAL ACADEMY, ANNAPOLIS, MD

13 BASIC	IBM 360	ENVIRONMENTAL DYNAMICS SUBROUTINES OCEANLIB
13 BASIC	IBM 360	GEOSTROPHIC CURRENT

NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NC

84	FORTRAN	IBM 360/165	WAVE INTERACTION WITH CURRENT CAPGRAY
24	FORTRAN	IBM 370/165	ESTUARINE MCDEL NONLNRA
26	FORTRAN	CDC 6400	UPWELLING CSTLUPWL
26	FORTRAN IV	IBM 360	MATHEMATICAL WATER QUALITY MODEL FOR ESTUARIES
26	FORTRAN IV	IBM 360	COMPUTATION OF FLOW THROUGH MASONBORG INLET NO
26	FORTRAN IV	IBM 360	CIRCULATION IN PAMLICE SOUND

CREGON STATE UNIVERSITY, CORVALLIS, OR

126 FORTRAN	CDC 3300/0S3	TIME SERIES	ARAND ACFFT
126 FORTRAN	CDC 3300/GS3	TIME SERIES	ARAND ACORR
126 FORTRAN	CDC 3300/0S3	TIME SERIES	ARAND ACRPLT
126 FORTRAN	CDC 3300/GS3	TIME SERIES	ARAND ALIGN
126 FORTRAN	CDC 3300/CS3	TIME SERIES	ARAND AMPACO
126 FORTRAN	CDC 3300/0S3	TIME SERIES	ARAND ARMAP
126 FORTRAN	CDC 3300/CS3	TIME SERIES	ARAND AUTO
126 FORTRAN	CDC 3300/CS3	TIME SERIES	ARAND AUTOPLT

126	FORTRAN	CDC	3300/OS3	TIME	SERIES	ARAND	AXISL
126	FORTRAN	CDC	3300/083	TIME	SERIES	ARAND	CCFFT
127	FORTRAN	CDC	3300/0S3	TIME	SERIES	ARAND	CCORR
127	FORTRAN	CDC	3300/053	TIME	SERIES	ARAND	CCNPLT
127		CDC					
	FORTRAN		3300/CS3	TIME	SERIES	ARAND	COMPLOT
127	FORTRAN	CDC	3300/0S3	TIME	SERIES	ARAND	CONFID
127	FORTRAN	CDC	3300/083	TĮME	SERIES	ARAND	CONFID 1
127	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	CCNMODE
127	FORTRAN	CDC	3300/OS3	TIME	SERIES	ARAND	CCPH
127	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	COSTR
127	FORTRAN	CDC	3300/053	TIME	SERIES	ARAND	CPEES
127	FORTRAN	CDC	3300/053	TIME	SERIES	ARAND	CPLT1
127	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	CPLT2
127	FORTRAN	CDC	3300/OS3	TIME	SERIES	ARAND	CROPLT
127	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	
127	FORTRAN	CDC					CROSS
			3300/CS3	TIME	SERIES	ARAND	CUSID
127	FCRTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	CUSFO
128	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	CZT
128	FORTRAN	CDC	3300/0S3	TIME	SERIES	ARAND	DATPLT
128	FORTRAN	CDC	3300/0S3	TIME	SERIES	ARAND	DEMOD1
128	FORTRAN	CDC	3300/0\$3	TIME	SERIES	ARAND	CEMCD2
128	FORTRAN	CDC	3300/GS3	TIME	SERIES	ARAND	DEMOD3
128	FORTRAN	CDC	3300/GS3	TIME	SERIES	ARAND	CETRND
128	FORTRAN	CDC	3300/0S3	TIME	SERIES	ARAND	DIFF12
128	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	EUREKA
128	FORTRAN	CDC	3300/0\$3	TIME	SERIES	ARAND	EXSMO
129	FORTRAN	CDC	3300/C\$3	TIME	SERIES	ARAND	FFIN
128	FORTRAN		3300/CS3	TIME	SERIES	ARAND	FFINI
128	FORTRAN	203	3300/CS3				
			-	TIME	SERIES	ARAND	FFTCNV
128	FORTRAN	CDC	3300/OS3	TIME	SERIES	ARAND	FFTPS
128	FORTRAN	CDC		TIME	SERIES	ARAND	FFTS
128	FORTRAN	CDC	3300/0S3	TIME	SERIES	ARAND	FFTSPC
128	FORTRAN	CDC		TIME	SERIES	≱RAND	FILTER1
128	FORTRAN	CDC	3000/0S3	TIME	SERIES	ARAND	FIVET
129	FORTRAN	CDC	3300/053	TIME	SERIES	ARAND	FELD
129	FORTRAN	CDC	3300/ES3	TIME	SERIES	ARAND	FCURTR
129	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	FOUSPC
129	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	FCUSPC1
129	FORTRAN	CDC	3300/0S3	TIME	SERIES	ARAND	FCUSPC2
129	FORTRAN	CDC	3300/0S3	TIME	SERIES	ARAND	FRESPON
129	FORTRAN	CDC	3300/GS3	TIME	SERIES	ARAND	GAPH
129	FORTRAN	CDC	3300/G\$3	TIME	SERIES	ARAND	GENER1
129	FORTRAN	CDC	3300/CS3	TIME			
129					SERIES	ARAND	GENER2
	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	GENER3
129	FORTRAN	CDC	3300/OS3	TIME	SERIES	ARAND	LOGPLOT
129	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	NC12T
	FORTRAN		3300/GS3				
	FORTRAN	_	3300/0\$3	TIME	SERIES	ARAND	PLTFOR
_	FCRTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	PLTFRQ
129	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	FLTSPC
130	FORTRAN	CDC	3300/0S3	TIME.	SERIES	ARAND	PCLRT
130	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	PCLYDV
130	FORTRAN	CDC		TIME	SERIES	ARAND	PROPLT
	FORTRAN	CDC	3300/CS3	TIME	SERIES	ARAND	PSQRT
	FORTRAN	CDC	3300/053	TIME	SERIES	ARAND	RANCM
	FORTRAN	CDC	3300/053	TIME	SERIES	ARAND	RCTFFT
130	FORTRAN	CDC	3300/633	TIME	SERIES	ARAND	RESPON
130	FORTRAN		3300/CS3	TIME	SERIES	ARAND	REVERS
130	FORTRAN				SERIES		RPLACE
150	IUNIKAN	CDC	3300/CS3	TIME	356153	ARAND	RFLACE

```
130 FORTRAN
                                                CDC 3300/083 TIME SERIES ARAND RRVERS
 130 FORTRAN
                                                     CDC 3300/OS3 TIME SERIES ARAND SARIT
                                                     CDC 3300/GS3 TIME SERIES ARAND SERGEN CDC 3300/GS3 TIME SERIES ARAND SHAPE CDC 3300/CS3 TIME SERIES ARAND SINTR
 130 FCRTRAN
  130 FORTRAN
 130 FORTRAN
                                                     CDC 3300/GS3 TIME SERIES ARAND SMO
 130 FORTRAN
 130 FORTRAN
                                                     CDC 3300/OS3 TIME SERIES ARAND SPEC
 130 FORTRAN
                                                    CDC 3300/0S3 TIME SERIES ARAND SPECT1
                                                     CDC 3300/0S3 TIME SERIES ARAND SPECT2
CDC 3300/0S3 TIME SERIES ARAND TAUTOPLT
 130 FORTRAN
 131 FORTRAN
 131 FORTRAN
                                                     CDC 3300/CS3 TIME SERIES ARAND TCGHPLT
  131 FORTRAN
                                                     CDC 3300/CS3 TIME SERIES ARAND TCROPLT
  131 FORTRAN
                                                     CDC 3300/CS3 TIME SERIES ARAND TFORM1
                                                     CDC 3300/CS3 TIME SERIES ARAND TFORM2
CDC 3300/OS3 TIME SERIES ARAND TIMSPC
CDC 3300/GS3 TIME SERIES ARAND TLOGPLT
 131 FORTRAN
  131 FORTRAN
 131 FORTRAN
 131 FORTRAN
                                                   CDC 3300/0S3 TIME SERIES ARAND INCIZT
  131 FORTRAN
                                               CDC 3300/GS3 TIME SERIES ARAND TPHAPLT
                                                   CDC 3300/CS3 TIME SERIES ARAND TPLTFRQ CDC 3300/CS3 TIME SERIES ARAND TPLTSPC CDC 3300/CS3 TIME SERIES ARAND TRISMO CDC 3300/CS3 TIME SERIES ARAND TSGEN
131 FORTRAN
131 FORTRAN
131 FORTRAN
131 FORTRAN
132 FORTRAN
132 FORTRAN
132 FORTRAN
133 FORTRAN
134 FORTRAN
135 FORTRAN
135 FORTRAN
136 FORTRAN
137 FORTRAN
138 FORTRAN
139 FORTRAN
130 FORTRAN
130 FORTRAN
131 FORTRAN
132 FORTRAN
133 FORTRAN
134 FORTRAN
135 FORTRAN
135 FORTRAN
136 FORTRAN
137 FORTRAN
138 FORTRAN
139 FORTRAN
130 FORTRAN
130 FORTRAN
131 FORTRAN
132 FORTRAN
133 FORTRAN
134 FORTRAN
135 FORTRAN
135 FORTRAN
136 GOD 3300/CS3 TIME SERIES ARAND TRANFRM
137 FORTRAN
138 FORTRAN
139 FORTRAN
130 FORTRAN
130 FORTRAN
131 FORTRAN
132 FORTRAN
133 FORTRAN
134 FORTRAN
135 FORTRAN
136 GOD 3300/CS3 TIME SERIES ARAND USED
137 FORTRAN
138 FORTRAN
139 FORTRAN
130 FORTRAN
130 FORTRAN
131 FORTRAN
132 FORTRAN
133 FORTRAN
134 FORTRAN
135 FORTRAN
136 GOD 3300/CS3 TIME SERIES ARAND USED
137 FORTRAN
138 FORTRAN
139 FORTRAN
130 FORTRAN
130 FORTRAN
131 FORTRAN
132 FORTRAN
133 FORTRAN
134 FORTRAN
135 FORTRAN
136 GOD 3300/CS3 TIME SERIES ARAND USED
137 FORTRAN
138 FORTRAN
139 FORTRAN
130 FORTRAN
130 FORTRAN
131 FORTRAN
132 FORTRAN
133 FORTRAN
134 FORTRAN
155 FORTRAN
156 GOD 3300/CS3 TIME SERIES ARAND USED
157 FORTRAN
158 FORTRAN
159 FORTRAN
150 FOR
 131 FORTRAN
                                                     CDC 3300/CS3 TIME SERIES ARAND WINDOW CDC 3300/CS3 TIME SERIES ARAND WINDOW1
 132 FORTRAN
  133 FORTRAN
    25 FORTRAN
                                                      1BM 370/155 ESTUARINE DENSITY CURRENTS AND SALINITY
                                                     CDC 3300 GEOPHYSICAL CATA REDUCTION AND PLOTTING CDC 3300 PRECESSING/CISPLAY MARINE GEOPHYSICAL DATA CDC 3300 MARINE SEISMIC DATA REGUCTION AND ANALYSIS CDC 3300 A LIBRARY OF GEOPHYSICAL SUBROUTINES GLIB
     39 FORTRAN IV
    39 FORTRAN IV
    39 FORTRAN IV
     39 FORTRAN IV
```

RAND CORPORATION, SANTA MONICA, CA

- 91 FORTRAN IV IBM 7090-94 SEA ICE STUDIES YARIT 91 FORTRAN IV IBM 7090-94 SEA ICE STUDIES FLIP 91 FORTRAN IV IBM 7090-94 SEA ICE STUDIES SALPR 91 FORTRAN IV IBM 7090-94 SEA ICE STUDIES RITE

RICE UNIVERSITY, HOUSTON, TX

38 FORTRAN IV CDC 6600 CONVECTION INVARIABLE VISCOSITY FLUID CONVEC

SCRIPPS INSTITUTION OF OCEANCGRAPHY, LA JCLLA, CA

142 FORTRAN IBM 1800 TRIGONCMETRY SUBROUTINES ASSUB SAS ASA 116 FORTRAN IV CDC 3600 PLCTTING PROGRAM PROFIL

```
IBM 1800
149 FORTRAN
                              FORMAT FREE INPUT SUBROUTINE QREAD
                              METERS VS FATHCMS MATBL
149 FORTRAN
                IBM 1800
               IBM 1800
                              DATE CALCULATIONS DAYWK
144 FORTRAN
               IBM 1800
144 FORTRAN
                              DATE CALCULATIONS AWDAT
144 FORTRAN
               IBM 1800
                              DATE CALCULATIONS NXTDY
               IBM 1800
144 FORTRAN
                              DATE CALCULATIONS YSTOY
                IBM 1800
IBM 1800
145 FORTRAN
                              JULIAN DAY SUBROUTINES CLEJL
145 FORTRAN
                              JULIAN DAY SUBROUTINES CLJUL
145 FORTRAN
                IBM 1800
                              TIME CONVERSION DTIME
146 FGRTRAN .63 CDC 6600
2 FORTRAN IV CDC 6600
                              HYDROGRAPHIC DATA REDUCTION TWO FIVE
                              STD DATA PRECESSING
105 FORTRAN
                IBM 1800
                              PLOTS MERCATER GRID CHART
105 FORTRAN
                 IBM 1800
                              NAVIGATIONAL SATELLITE PASSES ALRTX
               IBM 1800
106 FORTRAN
                              LORAN FIX LRFIX
106 FPRTRAN
               IBM 1800
                              PLAN COURSE AND SCHEDULE CRUIS
               IBM 1800
IBM 1800
IBM 1800
IBM 1800
CDC 3600
CDC 3600
106 FORTRAIN
                              EARTH SPHERICAL SUBROUTINES ESTCH ESTC2 ESTPL
107 FORTRAN
                              CEGREE CONVERSIONS DEGFR DEMI
107 FCRTRAN
              IBM 1800
                              MERCATOR CEGREES DMRCT
                              MAGNETIC FIELD COMPONENTS MAGFI
107 FGRTRAN
 51 FORTRAN
                              SPECIES AFFINITIES REGROUP
                              X-Y PLGTS MUCPAK
116 FORTRAN
                              STATICN DATA RETRIEVAL HYDROSEARCH
  2 ALGOL
142 ALGGL
                B 6700
                              INTERACTIVE CALCULATIONS DSDP/CALC
 98 ALGOL
                B 6700
                              SOUND VELCCITY THRU SCLID SAMPLES DSDP/SCN
                B 6700
148 ALGOL
                              MAILING LABELS
                B 6700
 48 ALGOL
                             SAND SILT AND CLAY FRACTIONS DSDP/GRAIN
```

SOUTHAMPTON COLLEGE, SCUTHAMPTON, NY

25 FORTRAN IV IBM 360/65 MIT SALINITY INTRUSION PROGRAM

TEXAS A&M UNIVERSITY, COLLEGE STATION, TX

7	FORTRAN	I۷	IBM 360/65	READ CALC INTERP STATION DATA CAPRICORN
7	FORTRAN	I۷	IBM 360/65	STATION DATA CALCULATIONS F3
8	FORTRAN	ΙV	IBM 360/65	PLCTS STATICN DATA PLTEDT
8.	FORTRAN	ΙV	IBM 360/65	CALCULATES STATION DATA SECPG
03	FORTRAN	ΙV	IBM 360/65	PLOTS MAPS GRIDS TRACKS MAP

UNIVERSIDAD N A DE MEXICO, MEXICO, DF

5 FORTRAN IV B 6700 CCEANCGRAPHY STATICN COMPUTER PROGRAM

UNIVERSITY OF BERGEN, NORWAY

79 FORTRAN II IBM 1620 PROCESSES CURRENT INSTRUMENT CBSERVATIONS

UNIVERSITY OF DELAWARE, LEWES, DE

25 FORTRAN IV IBM 360 DYNAMIC DETERMINISTIC SIMULATION SIMUDELT

UNIVERSITY OF HAWAII, HONCLULU, HI

116 FORTRAN IBM 360 DENDRCGRAPH 116 FCRTRAN IBM 370 DENDRCGRAPH

UNIVERSITY OF ILLINOIS, URBANA, IL

83 FORTRAN IV IBM 360/75 WAVE BCTTCM VELOCITY

UNIVERSITY OF MAINE, WALPGLE, ME

153	FCRTRAN	IBM	370	REFORMATTED STATION OUTPUT IBM 1
28	FORTRAN 1	IV IBM	370	ESTUARINE CHEMISTRY MYACHEM
28	FORTRAN :	IV IBM	370	ESTUARINE TICES
55	FORTRAN	IBM	370	CHLCRCPHYLL CHLOR
55	FORTRAN	IB₩	370	PHYTOPLANKTON POPULATION DENSITY
55	FORTRAN	IBM	370	SPECIES DIVERSITY

UNIVERSITY OF MARYLAND, COLLEGE PARK, MD

24 FORTRAN IV UNIVAC 1108 THREE DIMENSICNAL ESTUARINE CIRCULATION MODEL 50 FORTRAN IV UNIVAC 1108 INVERSE PROBLEM IN ECGSYSTEM ANALYSIS

UNIVERSITY OF MIAMI, MIAMI, FL.

20	FORTRAN	PDP-11	GENERAL PURPOSE EDITOR DMSED
20	FORTRAN	PDP-11	TIME SERIES INTO PROFILES DMSCHP
20	FCRTRAN	PDP-11	AANDERAA CURRENT METER DATA AACAL
20	FORTRAN	PDP-11	CURRENT PROFILER DATA MK2CAL
20	FORTRAN	PDP-11	APPENCS NEW CATA TO FILE DERIVE
20	FORTRAN	UNIVAC 1106	APPENDS NEW DATA TO FILE DERIVE
20	FORTRAN	UNIVAC 1106	CONCATENATES SORTS SEGMENTS OUTPUTS DMSCRT
20	FORTRAN	UNIVAC 1106	INTERPOLATES TO UNIFORM GRID MATRIX 01
20	FORTRAN	UNIVAC 1106	TIME SERIES STC OR PCM PRCFILES PLSAD
20	FORTRAN	UNIVAC 1106	INTERNAL WAVES IWEG
20	FCRTRAN	UNIVAC 1106	DYNAMICAL FIELDS INTERNAL WAVE RAYS CHRSEC
20	FORTRAN	UNIVAC 1106	AUTC AND CROSS SPECTRA TUKEY METHOD
20	FORTRAN	UNIVAC 1106	AUTO AND CROSS SPECTRA POLARIZED FORM CMXSPC
20	FORTRAN	UNIVAC 1106	AMPLITUDES PHASES LEAST SQUARES TIDES4
20	FORTRAN	UNIVAC 1106	METEGROLOGICAL FLUXES METFLX
20	FORTRAN	UNIVAC 1106	CROSS CCVARIANCE MATRIX EMPEIGI

UNIVERSITY OF MICHIGAN, ANN ARBOR, MI

104 MAD	IBM 7090	GENERAL MAP FRCJECTION
104 MAD	IBM 7090	FINITE MAP PROJECTION DISTORTIONS

UNIVERSITY OF PITTSBURGH, PITTSBURGH, PA

GAM OB	IBM 7090	THECRETIC AL	RACIAL	TIDAL	FORCE

UNIVERSITY OF RHODE ISALND, KINGSTON, RI

28 FORTRAN IBM 370/155 MODELING AN CCEAN POND

UNIVERSITY OF PUERTO RICO, MAYAGUEZ, PR

5	FORTRAN	11	PDP 8E	MASS TRANSPORT AND VELOCITIES GEOMASS	
_	ECOTOAN	T 1/	DDD 10	CTATION DATA TLIPS	

5 FORTRAN IV PDP 10 STATION DATA TWIRP 5 FORTRAN IV PDP 10 THERMCMETER CORRECTION THERMOMETRIC DEPTH

UNIVERSITY OF TEXAS, PORT ARANSAS, TX

147	FORTRAN	I۷	IBM	360/65	READS NODC STATION DATA TAPE	
51	FORTRAN	ΙV	CDC	6600	PRODUCTIVITY OXYGEN	
52	FORTRAN	I۷	CDC	6600	SPECIES DIVERSITY JOB	
52	FORTRAN.	īν	CDC	6600	PRODUCTIVITY ECOPROD	

UNIVERSITY OF WASHINGTON, SEATTLE, WA

146	FORTRAN	ΙI	IBM 7094	STATICN DATA REDUCTION SYNOP
27	FORTRAN	I۷	CDC 6400	THREE-DIMENSIONAL SIMULATION PACKAGE AUGUR
52	FORTRAN	.IV	IBM 7094	CONCENTRATIONS PER SQUARE METER OF SURFACE
52	FORTRAN	I۷	CDC 6400	COMBINED CHLCROPHYLL AND PRODUCTIVITY
53	FORTRAN	I۷	IBM 7094	PHYTOPLANKTON NUMBERS VOLUME SURFACE AREA
53	MAP		IBM 7094	PHYTOPLANKTON NUMBERS VOLUME SURFACE AREA

UNIVERSITY OF WISCONSIN, MILWAUKEE, WI

134 FORTRAN IV	UNIVAC 1108	SPECTRAL	ANALYSIS OF	TIME SERIES
134 ALGOL	B 6700	SPECTRAL	ANALYSIS EF	TIME SERIES

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VA

136	FCRTRAN	I۷	IBM 370	PROBABILITY DISTRIBUTION WEIBUL
56	FORTRAN	I۷	IBM 370	RESOURCES ALLOCATION IN FISHERIES MGT PISCES
56	FORTRAN	I۷	IBM 370	WATER RESOURCES TEACHING GAME DAM
50	FORTRAN		IBM 370	GPTIMAL ECGSYSTEM POLICIES CEP

WILLIAMS COLLEGE, WILLIAMSTOWN, MA

25	FORTRAN	ΙV	IBM	1130	BEACH	SIMU	JLATICN MGDEL	
29	FORTRAN	ΙV	IBM	1130	BEACH	ΑND	NEARSHORE MAPS A-	S

118 FORTRAN IV XDS SIGMA 7 HORIZONTAL HISTOGRAMS HISTO

WOODS HELE OCEANEGRAPHIC INSTITUTION, WOODS HOLE, MA

118	FORTRAN IN	/ XDS SIGMA 7	PRINTER PLOTS LISPLO
119	FORTRAN IN	/ XDS SIGMA 7	PLOT OF FREQUENCY DISTRIBUTION THISTO
119	FORTRAN IN	XDS SIGMA 7	VELOCITY VECTOR AVERAGES VECTAV
119	FORTRAN I	/ XDS SIGMA 7	PREGRESSIVE VECTORS PROVEC
119	FORTRAN IN	XDS SIGMA 7	PLOTS DATA ALONG TRACK
119	FORTRAN IN	XDS SIGMA 7	PRCFILE VERSUS TIME OR DISTANCE
120	FORTRAN I	/ HP MINI	PLOTS NAVIGATION WITH ANY OTHER DATA TYPE DEEP6
102	FORTRAN I	/ XDS SIGMA 7	RAYTRACE
97	FORTRAN T	YNS SIGMA 7	SOUND VELCCITY SONVEL

```
97 FORTRAN IV
                 XDS SIGMA 7 DEPTH CORRECTION MTCOR SOUND VELOCITY
148 FORTRAN IV
143 FORTRAN IV
                 XDS SIGMA 7 EDITING FOR WHOL FORMAT SCRUB
XDS SIGMA 7 THERMOMETER CORRECTION TOPLO
143 FORTRAN
                 HP 2100
                               THERMOMETER CORRECTION DEPTH COMP HYD1
  8 FORTRAN IV
                 HP 2100
                                STATICN DATA HYC2
  8 FORTRAN IV
                 XDS SIGMA 7 BRUNT-VAISALA FREQUENCY OBVFRQ
  9 FORTRAN IV
                 XDS SIGMA 7
                               DYNAMIC HEIGHT DYNHT
  9 FORTRAN IV
                 XDS SIGMA 7
                               POTENTIAL ENERGY ANOMALY PEN
  9 FORTRAN IV
                 XDS SIGMA 7
                               VARIOUS PARAMETERS FROM STATION DATA OCCCMP
  9 FORTRAN IV
                 XDS SIGMA 7
                               SPECIFIC VELUME ANLMALY SVANOM
  9 FORTRAN IV
                 XDS SIGMA 7
                              PRESSURE SUBROUTINE PRESS
 10 FORTRAN IV
                 XDS SIGMA 7
                               REACS STATICN DATA
 10 FORTRAN IV
10 FORTRAN IV
                 XDS SIGMA 7
XDS SIGMA 7
                               GECSTROPHIC VELOCITY DIFFERENCE VEL
                               VOLUME TRANSPORT VTR
 10 FORTRAN IV
                 XDS SIGMA 7 SIGMA-T SIGMAT AND DSIGMT
 10 FORTRAN IV
                 XDS SIGMA 7 ADIABATIC TEMPERATURE GRADIENT ATG
                 XDS SIGMA 7 POTENTIAL TEMPERATURE POTEMP
 10 FORTRAN IV
                 XDS SIGMA 7 SPECIFIC VOLUME SPVOL XDS SIGMA 7 STATISTICS FROM WHOI FORMAT STATS
10 FORTRAN IV
136 FORTRAN IV
                 XDS SIGMA 7
105 FORTRAN IV
                               LORAN OR CMEGA CONVERSION GEPOS
                 HP 2100S
105 FORTRAN IV
                 HP 3100A
                               CRUISE TRACK TMERC
105 FORTRAN IV
                 XDS SIGMA 7 TRANSFORMATION OF SPHERICAL COORDINATES ROTGUT
106 FORTRAN IV
                 XDS SIGMA 7 SUM OF FINITE ROTATIONS ON A SPHERE SUMROT
 41 FORTRAN IV
50 FORTRAN IV
                               GECMAGNETIC FIELD MFIELD WHOI BICLOGY SERIES FTAPE
                 XDS SIGMA 7
XDS SIGMA 7
 50 FORTRAN IV
                 XDS SIGMA 7
                               WHCI BICLOGY SERIES FLISHT
 50 FORTRAN IV
                 XDS SIGMA 7
                               WHCI BICLCGY SERIES CHKSPIT
 50 FORTRAN ÌV
                 XDS SIGMA 7
                               WHCI BICLCGY SERIES SELECT
 50 FORTRAN IV
                               WHCI BICLOGY SERIES CHANAT
                 XDS SIGMA 7
 50 FORTRAN IV
                               WHOI BICLOGY SERIES PREPLOTG
                 XDS SIGMA 7
 50 FORTRAN IV
                               WHGI BIOLOGY SERIES PLOTSPECG
                 XDS SIGMA 7
 50 FORTRAN IV
                 XDS SIGMA 7
                               WHOI BIOLOGY SERIES STATAB
 77 FORTRAN IV
                 XDS SIGMA 7
                               CURRENT METER CLOCK SEQUENCE XTAL
 78 FORTRAN IV
                 XDS SIGMA 7 CURRENT METER CALIBRATION CASDEC
 78 FORTRAN IV
                 XDS SIGMA 7 CURRENT METER DATA REDUCTION AND EDITING CARP
```

أفريضا وفلجهاش سيب

Yr. Mo. Day	prepared by (Name and Phone) title		03. Summary action New Replacement Delet Previous Internal Software ID
Automated Data System I Computer Program	cocessing mode 10. Computer System Support/Utility Scientific/Engine Bibliographic/Te	Business ering Process Control	Specific
1. Submitting organization and a		12. Technical contact	(s) and phone
	·		
3. Narrațive	<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·
			•
4. Keywords			· · · · · · · · · · · · · · · · · · ·
•			
5. Computer manuf'r and model	16. Computer operating system	17. Programing language(s)	18. Number of source program sta
9. Computer memory requiremen	s 20. Tape drives	21. Disk/Drum units	22. Terminals
3. Other operational requirements		- -	
24. Software availability		25. Documentation availability	
	nited In-house only	· Available !!	nadequate in-house only
26. FOR SUBMITTING ORGANIZA	TION USE		
	•		

INSTRUCTIONS

- 01. Summary Date. Enter date summary prepared. Use Year, Month. Day format: YYMMDD.
- 02. Summary Prepared By. Enter name and phone number (including area code) of individual who prepared this summary.
- 03. Summary Action. Mark the appropriate box for new summary, replacement summary or deletion of summary. If this software summary is a replacement, enter under "Previous Internal Software ID" the internal software identification as reported in item 07 of the original summary, and enter the new internal software identification in item 07 of this form; complete all other items as for a new summary. If a software summary is to be deleted, enter under "Previous Internal Software ID" the internal software identification as reported in item 07 of the original summary; complete only items 01, 02, 03 and 11 on this form.
- 04. Software Date. Enter date software was completed or last updated. Use Year, Month, Day format: YYMMDD.
- 05. Software Title. Make title as descriptive as possible.
- 06. Short Title. (Optional) Enter commonly used abbreviation or acronym which identifies the software.
- 07. Internal Software ID. Enter a unique identification number or code.
- 08. Software Type. Mark the appropriate box for an Automated Data System (set of computer programs), Computer Program, or Subroutine/Module, whichever best describes the software.
- 09. Processing Mode. Mark the appropriate box for an Interactive, Batch, or Combination mode, whichever best describes the software.
- 10. Application Area.

General: Mark the appropriate box which best describes the general area of application from among:

Computer Systems Support/Utility Management/Business

Process Control Bibliographic/Textual

Scientific/Engineering

Other Specific: Specify the sub-area of application; e.g.: "COBOL optimizer" if the general area is "Computer Systems Support/Utility"; "Payroll" if the general area is "Management/Business"; etc. Elaborate here if the general area is "Other."

- 11. Submitting Organization and Address. Identify the organization responsible for the software as completely as possible, to the Branch or Division level, but including Agency, Department (Bureau/Administration), Service, Corporation, Commission, or Council. Fill in complete mailing address, including mail code, street address, city, state, and ZIP code.
- 12. Technical Contact(s) and Phone: Enter person(s) or office(s) to be contacted for technical information on subject matter and/or operational aspects of software. Include telephone area code. Provide organization name and mailing address, if different from that in item 11.
- 13. Narrative. Describe concisely the problem addressed and methods of solution. Include significant factors such as special operating system modifications, security concerns, relationships to other software, input and output media, virtual memory requirements, and unique hardware features. Cite references, if appropriate.
- 14. Keywords. List significant words or phrases which reflect the functions, applications and features of the software. Separate entries with semicolons.
- 15. Computer Manufacturer and Model. Identify mainframe computer(s) on which software is operational.
- 16. Computer Operating System. Enter name, number, and release under which software is operating. Identify enhancements in the Narrative (item 13).
- 17. Programing Language(s). Identify the language(s) in which the software is written, including version; e.g., ANSI COBOL, FORTRAN V, SIMSCRIPT II.5, SLEUTH II.
- 18. Number of Source Program Statements. Include statements in this software, separate macros, called subroutines, etc.
- 19. Computer Memory Requirements. Enter minimum internal memory necessary to execute software, exclusive of memory required for the operating system. Specify words, bytes, characters, etc., and number of bits per unit. Identify virtual memory requirements in the Narrative (item 13).
- 20. Tape Drives. Identify number needed to operate software. Specify, if critical, manufacturer, model, tracks, recording density, etc.
- 21. Disk/Drum Units. Identify number and size (in same units as "Memory"—item 19) needed to operate software. Specify, if critical, manufacturer,
- 22. Terminals. Identify number of terminals required. Specify, if critical, type, speed, character set, screen/line size, etc.
- 23 Other Operational Requirements. Identify peripheral devices, support software, or related equipment not indicated above, e.g., optical character devices, facsimile, computer-output microfilm, graphic plotters.
- 24. Software Availability. Mark the appropriate box which best describes the software availability from among: Available to the Public, Limited Availability (e.g.: for government use only), and For In-house Use Only. If the software is "Available", include a mail or phone contact point, as well as the price and form in which the software is available, if possible.
- 25. Documentation Availability. Mark the appropriate box which best describes the documentation availability from among: Available to the Public, Inadequate for Distribution, and For In-house Use Only. If documentation is "Available", include a mail or phone contact point, as well as the price and form in which the documentation is available, if possible. If documentation is presently "Inadequate", show the expected availability date.
- 26. For Submitting Organization Use. This area is provided for the use of the organization submitting this summary. It may contain any information deemed useful for internal operation.

